-
Je něco špatně v tomto záznamu ?
Denoising of dual-VENC PC-MRI with large high/low VENC ratios
J. Brunátová, M. Löcke, S. Uribe, C. Bertoglio
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
Grantová podpora
308522
Grantová Agentura, Univerzita Karlova
852544
HORIZON EUROPE European Research Council - CardioZoom
PubMed
39290071
DOI
10.1002/mrm.30278
Knihovny.cz E-zdroje
- MeSH
- algoritmy * MeSH
- aorta * diagnostické zobrazování MeSH
- artefakty * MeSH
- fantomy radiodiagnostické MeSH
- interpretace obrazu počítačem metody MeSH
- intrakraniální aneurysma diagnostické zobrazování MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- mozek diagnostické zobrazování MeSH
- počítačová simulace MeSH
- počítačové zpracování obrazu * metody MeSH
- poměr signál - šum * MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
PURPOSE: Dual velocity encoding PC-MRI can produce spurious artifacts when using high ratios of velocity encoding values (VENCs), limiting its ability to generate high-quality images across a wide range of encoding velocities. This study aims to propose and compare dual-VENC correction methods for such artifacts. THEORY AND METHODS: Two denoising approaches based on spatiotemporal regularization are proposed and compared with a state-of-the-art method based on sign correction. Accuracy is assessed using simulated data from an aorta and brain aneurysm, as well as 8 two-dimensional (2D) PC-MRI ascending aorta datasets. Two temporal resolutions (30,60) ms and noise levels (9,12) dB are considered, with noise added to the complex magnetization. The error is evaluated with respect to the noise-free measurement in the synthetic case and to the unwrapped image without additional noise in the volunteer datasets. RESULTS: In all studied cases, the proposed methods are more accurate than the Sign Correction technique. Using simulated 2D+T data from the aorta (60 ms, 9 dB), the Dual-VENC (DV) error 0.82±0.07$$ 0.82\pm 0.07 $$ is reduced to: 0.66±0.04$$ 0.66\pm 0.04 $$ (Sign Correction); 0.34±0.04$$ 0.34\pm 0.04 $$ and 0.32±0.04$$ 0.32\pm 0.04 $$ (proposed techniques). The methods are found to be significantly different (p-value <0.05$$ <0.05 $$ ). Importantly, brain aneurysm data revealed that the Sign Correction method is not suitable, as it increases error when the flow is not unidirectional. All three methods improve the accuracy of in vivo data. CONCLUSION: The newly proposed methods outperform the Sign Correction method in improving dual-VENC PC-MRI images. Among them, the approach based on temporal differences has shown the highest accuracy.
Bernoulli Institute University of Groningen Groningen The Netherlands
Department of Medical Imaging and Radiation Sciences Monash University Melbourne Victoria Australia
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25002926
- 003
- CZ-PrNML
- 005
- 20250206103943.0
- 007
- ta
- 008
- 250121s2025 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/mrm.30278 $2 doi
- 035 __
- $a (PubMed)39290071
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Brunátová, Jana $u Bernoulli Institute, University of Groningen, Groningen, The Netherlands $u Mathematical Institute, Charles University, Prague, Czechia $1 https://orcid.org/000900005948233X
- 245 10
- $a Denoising of dual-VENC PC-MRI with large high/low VENC ratios / $c J. Brunátová, M. Löcke, S. Uribe, C. Bertoglio
- 520 9_
- $a PURPOSE: Dual velocity encoding PC-MRI can produce spurious artifacts when using high ratios of velocity encoding values (VENCs), limiting its ability to generate high-quality images across a wide range of encoding velocities. This study aims to propose and compare dual-VENC correction methods for such artifacts. THEORY AND METHODS: Two denoising approaches based on spatiotemporal regularization are proposed and compared with a state-of-the-art method based on sign correction. Accuracy is assessed using simulated data from an aorta and brain aneurysm, as well as 8 two-dimensional (2D) PC-MRI ascending aorta datasets. Two temporal resolutions (30,60) ms and noise levels (9,12) dB are considered, with noise added to the complex magnetization. The error is evaluated with respect to the noise-free measurement in the synthetic case and to the unwrapped image without additional noise in the volunteer datasets. RESULTS: In all studied cases, the proposed methods are more accurate than the Sign Correction technique. Using simulated 2D+T data from the aorta (60 ms, 9 dB), the Dual-VENC (DV) error 0.82±0.07$$ 0.82\pm 0.07 $$ is reduced to: 0.66±0.04$$ 0.66\pm 0.04 $$ (Sign Correction); 0.34±0.04$$ 0.34\pm 0.04 $$ and 0.32±0.04$$ 0.32\pm 0.04 $$ (proposed techniques). The methods are found to be significantly different (p-value <0.05$$ <0.05 $$ ). Importantly, brain aneurysm data revealed that the Sign Correction method is not suitable, as it increases error when the flow is not unidirectional. All three methods improve the accuracy of in vivo data. CONCLUSION: The newly proposed methods outperform the Sign Correction method in improving dual-VENC PC-MRI images. Among them, the approach based on temporal differences has shown the highest accuracy.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a artefakty $7 D016477
- 650 12
- $a magnetická rezonanční tomografie $x metody $7 D008279
- 650 12
- $a aorta $x diagnostické zobrazování $7 D001011
- 650 12
- $a algoritmy $7 D000465
- 650 12
- $a počítačové zpracování obrazu $x metody $7 D007091
- 650 12
- $a poměr signál - šum $7 D059629
- 650 _2
- $a intrakraniální aneurysma $x diagnostické zobrazování $7 D002532
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a mozek $x diagnostické zobrazování $7 D001921
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a interpretace obrazu počítačem $x metody $7 D007090
- 650 _2
- $a fantomy radiodiagnostické $7 D019047
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Löcke, Miriam $u Mathematical Institute, Charles University, Prague, Czechia $1 https://orcid.org/0000000203784061
- 700 1_
- $a Uribe, Sergio $u Department of Medical Imaging and Radiation Sciences, Monash University, Melbourne, Victoria, Australia $1 https://orcid.org/0000000249709710
- 700 1_
- $a Bertoglio, Cristóbal $u Bernoulli Institute, University of Groningen, Groningen, The Netherlands $1 https://orcid.org/0000000150491707
- 773 0_
- $w MED00003172 $t Magnetic resonance in medicine $x 1522-2594 $g Roč. 93, č. 1 (2025), s. 353-368
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39290071 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250121 $b ABA008
- 991 __
- $a 20250206103939 $b ABA008
- 999 __
- $a ok $b bmc $g 2262989 $s 1238933
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 93 $c 1 $d 353-368 $e 20240918 $i 1522-2594 $m Magnetic resonance in medicine $n Magn Reson Med $x MED00003172
- GRA __
- $a 308522 $p Grantová Agentura, Univerzita Karlova
- GRA __
- $a 852544 $p HORIZON EUROPE European Research Council - CardioZoom
- LZP __
- $a Pubmed-20250121