-
Je něco špatně v tomto záznamu ?
The class imbalance problem in automatic localization of the epileptogenic zone for epilepsy surgery: a systematic review
V. Hrtonova, K. Jaber, P. Nejedly, ER. Blackwood, P. Klimes, B. Frauscher
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, systematický přehled, přehledy
PubMed
40489993
DOI
10.1088/1741-2552/ade28c
Knihovny.cz E-zdroje
- MeSH
- elektroencefalografie metody MeSH
- elektrokortikografie * metody MeSH
- epilepsie * chirurgie diagnóza patofyziologie MeSH
- implantované elektrody MeSH
- lidé MeSH
- strojové učení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- systematický přehled MeSH
Objective.Accurate localization of the epileptogenic zone (EZ) is crucial for epilepsy surgery, but the class imbalance of epileptogenic vs. non-epileptogenic electrode contacts in intracranial electroencephalography (iEEG) data poses significant challenges for automatic localization methods. This review evaluates methodologies for handling the class imbalance in EZ localization studies that use machine learning (ML).Approach.We systematically reviewed studies employing ML to localize the EZ from iEEG data, focusing on strategies for addressing class imbalance in data handling, algorithm design, and evaluation.Results.Out of 2,128 screened studies, 35 fulfilled the inclusion criteria. Across the studies, the iEEG contacts annotated as epileptogenic prior to automatic localization constituted a median of 18.34% of all contacts. However, many of these studies did not adequately address the class imbalance problem. Techniques such as data resampling and cost-sensitive learning were used to mitigate the class imbalance problem, but the chosen evaluation metrics often failed to account for it.Significance.Class imbalance significantly impacts the reliability of EZ localization models. More comprehensive management and innovative approaches are needed to enhance the robustness and clinical utility of these models. Addressing class imbalance in ML models for EZ localization will improve both the predictive performance and reliability of these models.
1st Department of Neurology Faculty of Medicine Masaryk University Brno Czech Republic
Duke University Medical Center Library and Archives Durham NC United States of America
Institute of Scientific Instruments of the CAS Brno Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25015249
- 003
- CZ-PrNML
- 005
- 20250731090852.0
- 007
- ta
- 008
- 250708s2025 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1088/1741-2552/ade28c $2 doi
- 035 __
- $a (PubMed)40489993
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Hrtonova, Valentina $u First Department of Neurology, Faculty of Medicine, Masaryk University, Brno, Czech Republic $u Institute of Scientific Instruments of the CAS, Brno, Czech Republic $u Analytical Neurophysiology Lab, Department of Neurology, Duke University Medical Center, Durham, NC, United States of America $1 https://orcid.org/0009000198333772
- 245 14
- $a The class imbalance problem in automatic localization of the epileptogenic zone for epilepsy surgery: a systematic review / $c V. Hrtonova, K. Jaber, P. Nejedly, ER. Blackwood, P. Klimes, B. Frauscher
- 520 9_
- $a Objective.Accurate localization of the epileptogenic zone (EZ) is crucial for epilepsy surgery, but the class imbalance of epileptogenic vs. non-epileptogenic electrode contacts in intracranial electroencephalography (iEEG) data poses significant challenges for automatic localization methods. This review evaluates methodologies for handling the class imbalance in EZ localization studies that use machine learning (ML).Approach.We systematically reviewed studies employing ML to localize the EZ from iEEG data, focusing on strategies for addressing class imbalance in data handling, algorithm design, and evaluation.Results.Out of 2,128 screened studies, 35 fulfilled the inclusion criteria. Across the studies, the iEEG contacts annotated as epileptogenic prior to automatic localization constituted a median of 18.34% of all contacts. However, many of these studies did not adequately address the class imbalance problem. Techniques such as data resampling and cost-sensitive learning were used to mitigate the class imbalance problem, but the chosen evaluation metrics often failed to account for it.Significance.Class imbalance significantly impacts the reliability of EZ localization models. More comprehensive management and innovative approaches are needed to enhance the robustness and clinical utility of these models. Addressing class imbalance in ML models for EZ localization will improve both the predictive performance and reliability of these models.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a epilepsie $x chirurgie $x diagnóza $x patofyziologie $7 D004827
- 650 _2
- $a strojové učení $7 D000069550
- 650 12
- $a elektrokortikografie $x metody $7 D000069280
- 650 _2
- $a elektroencefalografie $x metody $7 D004569
- 650 _2
- $a implantované elektrody $7 D004567
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a systematický přehled $7 D000078182
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Jaber, Kassem $u Analytical Neurophysiology Lab, Department of Neurology, Duke University Medical Center, Durham, NC, United States of America $u Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, NC, United States of America $1 https://orcid.org/0009000741198470
- 700 1_
- $a Nejedly, Petr $u First Department of Neurology, Faculty of Medicine, Masaryk University, Brno, Czech Republic $u Institute of Scientific Instruments of the CAS, Brno, Czech Republic $1 https://orcid.org/0000000253822134
- 700 1_
- $a Blackwood, Elizabeth R $u Duke University Medical Center Library & Archives, Durham, NC, United States of America $1 https://orcid.org/0000000248638674
- 700 1_
- $a Klimes, Petr $u Institute of Scientific Instruments of the CAS, Brno, Czech Republic $1 https://orcid.org/0000000202329518
- 700 1_
- $a Frauscher, Birgit $u Analytical Neurophysiology Lab, Department of Neurology, Duke University Medical Center, Durham, NC, United States of America $u Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, NC, United States of America $1 https://orcid.org/0000000160641529
- 773 0_
- $w MED00188777 $t Journal of neural engineering $x 1741-2552 $g Roč. 22, č. 3 (2025)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/40489993 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250708 $b ABA008
- 991 __
- $a 20250731090846 $b ABA008
- 999 __
- $a ok $b bmc $g 2366234 $s 1252374
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 22 $c 3 $e 20250626 $i 1741-2552 $m Journal of neural engineering $n J Neural Eng $x MED00188777
- LZP __
- $a Pubmed-20250708