• Je něco špatně v tomto záznamu ?

The class imbalance problem in automatic localization of the epileptogenic zone for epilepsy surgery: a systematic review

V. Hrtonova, K. Jaber, P. Nejedly, ER. Blackwood, P. Klimes, B. Frauscher

. 2025 ; 22 (3) : . [pub] 20250626

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, systematický přehled, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc25015249

Objective.Accurate localization of the epileptogenic zone (EZ) is crucial for epilepsy surgery, but the class imbalance of epileptogenic vs. non-epileptogenic electrode contacts in intracranial electroencephalography (iEEG) data poses significant challenges for automatic localization methods. This review evaluates methodologies for handling the class imbalance in EZ localization studies that use machine learning (ML).Approach.We systematically reviewed studies employing ML to localize the EZ from iEEG data, focusing on strategies for addressing class imbalance in data handling, algorithm design, and evaluation.Results.Out of 2,128 screened studies, 35 fulfilled the inclusion criteria. Across the studies, the iEEG contacts annotated as epileptogenic prior to automatic localization constituted a median of 18.34% of all contacts. However, many of these studies did not adequately address the class imbalance problem. Techniques such as data resampling and cost-sensitive learning were used to mitigate the class imbalance problem, but the chosen evaluation metrics often failed to account for it.Significance.Class imbalance significantly impacts the reliability of EZ localization models. More comprehensive management and innovative approaches are needed to enhance the robustness and clinical utility of these models. Addressing class imbalance in ML models for EZ localization will improve both the predictive performance and reliability of these models.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25015249
003      
CZ-PrNML
005      
20250731090852.0
007      
ta
008      
250708s2025 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1088/1741-2552/ade28c $2 doi
035    __
$a (PubMed)40489993
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Hrtonova, Valentina $u First Department of Neurology, Faculty of Medicine, Masaryk University, Brno, Czech Republic $u Institute of Scientific Instruments of the CAS, Brno, Czech Republic $u Analytical Neurophysiology Lab, Department of Neurology, Duke University Medical Center, Durham, NC, United States of America $1 https://orcid.org/0009000198333772
245    14
$a The class imbalance problem in automatic localization of the epileptogenic zone for epilepsy surgery: a systematic review / $c V. Hrtonova, K. Jaber, P. Nejedly, ER. Blackwood, P. Klimes, B. Frauscher
520    9_
$a Objective.Accurate localization of the epileptogenic zone (EZ) is crucial for epilepsy surgery, but the class imbalance of epileptogenic vs. non-epileptogenic electrode contacts in intracranial electroencephalography (iEEG) data poses significant challenges for automatic localization methods. This review evaluates methodologies for handling the class imbalance in EZ localization studies that use machine learning (ML).Approach.We systematically reviewed studies employing ML to localize the EZ from iEEG data, focusing on strategies for addressing class imbalance in data handling, algorithm design, and evaluation.Results.Out of 2,128 screened studies, 35 fulfilled the inclusion criteria. Across the studies, the iEEG contacts annotated as epileptogenic prior to automatic localization constituted a median of 18.34% of all contacts. However, many of these studies did not adequately address the class imbalance problem. Techniques such as data resampling and cost-sensitive learning were used to mitigate the class imbalance problem, but the chosen evaluation metrics often failed to account for it.Significance.Class imbalance significantly impacts the reliability of EZ localization models. More comprehensive management and innovative approaches are needed to enhance the robustness and clinical utility of these models. Addressing class imbalance in ML models for EZ localization will improve both the predictive performance and reliability of these models.
650    _2
$a lidé $7 D006801
650    12
$a epilepsie $x chirurgie $x diagnóza $x patofyziologie $7 D004827
650    _2
$a strojové učení $7 D000069550
650    12
$a elektrokortikografie $x metody $7 D000069280
650    _2
$a elektroencefalografie $x metody $7 D004569
650    _2
$a implantované elektrody $7 D004567
655    _2
$a časopisecké články $7 D016428
655    _2
$a systematický přehled $7 D000078182
655    _2
$a přehledy $7 D016454
700    1_
$a Jaber, Kassem $u Analytical Neurophysiology Lab, Department of Neurology, Duke University Medical Center, Durham, NC, United States of America $u Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, NC, United States of America $1 https://orcid.org/0009000741198470
700    1_
$a Nejedly, Petr $u First Department of Neurology, Faculty of Medicine, Masaryk University, Brno, Czech Republic $u Institute of Scientific Instruments of the CAS, Brno, Czech Republic $1 https://orcid.org/0000000253822134
700    1_
$a Blackwood, Elizabeth R $u Duke University Medical Center Library & Archives, Durham, NC, United States of America $1 https://orcid.org/0000000248638674
700    1_
$a Klimes, Petr $u Institute of Scientific Instruments of the CAS, Brno, Czech Republic $1 https://orcid.org/0000000202329518
700    1_
$a Frauscher, Birgit $u Analytical Neurophysiology Lab, Department of Neurology, Duke University Medical Center, Durham, NC, United States of America $u Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, NC, United States of America $1 https://orcid.org/0000000160641529
773    0_
$w MED00188777 $t Journal of neural engineering $x 1741-2552 $g Roč. 22, č. 3 (2025)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/40489993 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250708 $b ABA008
991    __
$a 20250731090846 $b ABA008
999    __
$a ok $b bmc $g 2366234 $s 1252374
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 22 $c 3 $e 20250626 $i 1741-2552 $m Journal of neural engineering $n J Neural Eng $x MED00188777
LZP    __
$a Pubmed-20250708

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...