-
Je něco špatně v tomto záznamu ?
Mutations in GFAP Alter Early Lineage Commitment of Organoids
W. Dykstra, Z. Matusova, RA. Battaglia, P. Abaffy, N. Goya-Iglesias, D. Pérez-Sala, H. Ahlenius, M. Kubista, RJ. Pasterkamp, L. Li, J. Chao, Y. Shi, L. Valihrach, M. Pekny, EM. Hol
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
Grantová podpora
LCF/PR/HR21/52410002
'la Caixa' Foundation
EJP RD 2019 ALEXANDER
European Joint Programme on Rare Diseases
FO02021-0082
Svenska Sällskapet för Medicinsk Forskning
FO2022-1032
Svenska Sällskapet för Medicinsk Forskning
2018-02695
Vetenskapsrådet
2020-01148
Vetenskapsrådet
2019-00284
Vetenskapsrådet
Söderberg's Foundations
146051
ALF Gothenburg
965939
ALF Gothenburg
M-2019-1026
Petrus och Augusta Hedlunds Stiftelse
M2018-0803
Petrus och Augusta Hedlunds Stiftelse
24-11364S
Czech science foundation
24-12028S
Czech science foundation
Amlöv's Foundation
10.13039/501100011033
Agencia Estatal de Investigación
RVO 86652036
Institute of Biotechnology of the Czech Academy of Sciences (IBT CAS) institutional support
463002004
ZonMw - Netherlands
PID2021-126827OB-I00
MICIN and ERDF
RTI2018-097624-B-I00
MICIN and ERDF
PIPF-2022/SAL-GL-25771
Comunidad Autónoma de Madrid
463002004
ZonMw - Netherlands
PubMed
40735838
DOI
10.1002/glia.70049
Knihovny.cz E-zdroje
- MeSH
- Alexanderova nemoc genetika patologie MeSH
- buněčná diferenciace genetika fyziologie MeSH
- buněčný rodokmen * genetika MeSH
- gliový fibrilární kyselý protein * genetika metabolismus MeSH
- indukované pluripotentní kmenové buňky metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- mutace * genetika MeSH
- organoidy * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Glial fibrillary acidic protein (GFAP) is a type-3 intermediate filament protein mainly expressed in astrocytes in the central nervous system. Mutations in GFAP cause Alexander disease (AxD), a rare and fatal neurological disorder. How exactly mutant GFAP eventually leads to white and gray matter deterioration in AxD remains unknown. GFAP is known to be expressed also in neural precursor cells in the developing brain. Here, we used AxD patient-derived induced pluripotent stem cells (iPSCs) to explore the impact of mutant GFAP during neurodifferentiation. Our results show that GFAP is already expressed in iPSCs. Moreover, we have found that mutations in GFAP can severely affect neural organoid development through altering lineage commitment in embryoid bodies. Together, these results support the notion that GFAP plays a role as an early modulator of neurodevelopment.
Centro de Investigaciones Biológicas Margarita Salas C S 1 C Madrid Spain
Department of Cellular Neurophysiology Institute of Experimental Medicine CAS Prague Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25021385
- 003
- CZ-PrNML
- 005
- 20251023075618.0
- 007
- ta
- 008
- 251014s2025 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/glia.70049 $2 doi
- 035 __
- $a (PubMed)40735838
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Dykstra, Werner $u Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands $1 https://orcid.org/0000000276634689
- 245 10
- $a Mutations in GFAP Alter Early Lineage Commitment of Organoids / $c W. Dykstra, Z. Matusova, RA. Battaglia, P. Abaffy, N. Goya-Iglesias, D. Pérez-Sala, H. Ahlenius, M. Kubista, RJ. Pasterkamp, L. Li, J. Chao, Y. Shi, L. Valihrach, M. Pekny, EM. Hol
- 520 9_
- $a Glial fibrillary acidic protein (GFAP) is a type-3 intermediate filament protein mainly expressed in astrocytes in the central nervous system. Mutations in GFAP cause Alexander disease (AxD), a rare and fatal neurological disorder. How exactly mutant GFAP eventually leads to white and gray matter deterioration in AxD remains unknown. GFAP is known to be expressed also in neural precursor cells in the developing brain. Here, we used AxD patient-derived induced pluripotent stem cells (iPSCs) to explore the impact of mutant GFAP during neurodifferentiation. Our results show that GFAP is already expressed in iPSCs. Moreover, we have found that mutations in GFAP can severely affect neural organoid development through altering lineage commitment in embryoid bodies. Together, these results support the notion that GFAP plays a role as an early modulator of neurodevelopment.
- 650 12
- $a gliový fibrilární kyselý protein $x genetika $x metabolismus $7 D005904
- 650 12
- $a organoidy $x metabolismus $7 D009940
- 650 12
- $a mutace $x genetika $7 D009154
- 650 _2
- $a indukované pluripotentní kmenové buňky $x metabolismus $7 D057026
- 650 _2
- $a Alexanderova nemoc $x genetika $x patologie $7 D038261
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a buněčný rodokmen $x genetika $7 D019070
- 650 _2
- $a buněčná diferenciace $x genetika $x fyziologie $7 D002454
- 650 _2
- $a kultivované buňky $7 D002478
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Matusova, Zuzana $u Laboratory of Glial Biology and Omics Technologies, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic $u Faculty of Science, Charles University, Prague, Czech Republic $1 https://orcid.org/0000000250145801
- 700 1_
- $a Battaglia, Rachel A $u Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA $1 https://orcid.org/0000000331876964
- 700 1_
- $a Abaffy, Pavel $u Laboratory of Glial Biology and Omics Technologies, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic $1 https://orcid.org/0000000275718880
- 700 1_
- $a Goya-Iglesias, Nuria $u Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., Madrid, Spain $1 https://orcid.org/0009000358301287
- 700 1_
- $a Pérez-Sala, Dolores $u Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., Madrid, Spain $1 https://orcid.org/000000030600665X
- 700 1_
- $a Ahlenius, Henrik $u Stem Cells, Aging and Neurodegeneration, Lund Stem Cell Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden $1 https://orcid.org/0000000189586148
- 700 1_
- $a Kubista, Mikael $u Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic $1 https://orcid.org/000000022940352X
- 700 1_
- $a Pasterkamp, R Jeroen $u Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands $1 https://orcid.org/0000000316316440
- 700 1_
- $a Li, Li $u Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, California, USA $1 https://orcid.org/0000000178866056
- 700 1_
- $a Chao, Jianfei $u Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, California, USA $1 https://orcid.org/0000000346079925
- 700 1_
- $a Shi, Yanhong $u Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, California, USA $1 https://orcid.org/0000000239385839
- 700 1_
- $a Valihrach, Lukas $u Laboratory of Glial Biology and Omics Technologies, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic $u Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic $u Department of Cellular Neurophysiology, Institute of Experimental Medicine CAS, Prague, Czech Republic $1 https://orcid.org/0000000267044337
- 700 1_
- $a Pekny, Milos $u Laboratory of Astrocyte Biology and CNS Regeneration, Center of Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gotenburg, Sweden $1 https://orcid.org/0000000316078075
- 700 1_
- $a Hol, Elly M $u Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands $1 https://orcid.org/0000000156042603
- 773 0_
- $w MED00001936 $t Glia $x 1098-1136 $g Roč. 73, č. 11 (2025), s. 2167-2188
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/40735838 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20251014 $b ABA008
- 991 __
- $a 20251023075624 $b ABA008
- 999 __
- $a ok $b bmc $g 2416671 $s 1259548
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 73 $c 11 $d 2167-2188 $e 20250730 $i 1098-1136 $m Glia $n Glia $x MED00001936
- GRA __
- $a LCF/PR/HR21/52410002 $p 'la Caixa' Foundation
- GRA __
- $a EJP RD 2019 ALEXANDER $p European Joint Programme on Rare Diseases
- GRA __
- $a FO02021-0082 $p Svenska Sällskapet för Medicinsk Forskning
- GRA __
- $a FO2022-1032 $p Svenska Sällskapet för Medicinsk Forskning
- GRA __
- $a 2018-02695 $p Vetenskapsrådet
- GRA __
- $a 2020-01148 $p Vetenskapsrådet
- GRA __
- $a 2019-00284 $p Vetenskapsrådet
- GRA __
- $p Söderberg's Foundations
- GRA __
- $a 146051 $p ALF Gothenburg
- GRA __
- $a 965939 $p ALF Gothenburg
- GRA __
- $a M-2019-1026 $p Petrus och Augusta Hedlunds Stiftelse
- GRA __
- $a M2018-0803 $p Petrus och Augusta Hedlunds Stiftelse
- GRA __
- $a 24-11364S $p Czech science foundation
- GRA __
- $a 24-12028S $p Czech science foundation
- GRA __
- $p Amlöv's Foundation
- GRA __
- $a 10.13039/501100011033 $p Agencia Estatal de Investigación
- GRA __
- $a RVO 86652036 $p Institute of Biotechnology of the Czech Academy of Sciences (IBT CAS) institutional support
- GRA __
- $a 463002004 $p ZonMw $2 Netherlands
- GRA __
- $a PID2021-126827OB-I00 $p MICIN and ERDF
- GRA __
- $a RTI2018-097624-B-I00 $p MICIN and ERDF
- GRA __
- $a PIPF-2022/SAL-GL-25771 $p Comunidad Autónoma de Madrid
- GRA __
- $a 463002004 $p ZonMw $2 Netherlands
- LZP __
- $a Pubmed-20251014