Cardiac phosphocreatine deficiency induced by GPA during postnatal development in rat
Jazyk angličtina Země Nizozemsko Médium print
Typ dokumentu časopisecké články
PubMed
8974041
DOI
10.1007/bf00408642
Knihovny.cz E-zdroje
- MeSH
- fosfokreatin nedostatek MeSH
- guanidiny farmakologie MeSH
- izoenzymy MeSH
- koronární cirkulace MeSH
- kreatinkinasa metabolismus MeSH
- krevní tlak MeSH
- krysa rodu Rattus MeSH
- myokard metabolismus MeSH
- oxid uhelnatý metabolismus MeSH
- potkani Wistar MeSH
- propionáty farmakologie MeSH
- sarkoplazmatické retikulum účinky léků metabolismus MeSH
- srdce účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosfokreatin MeSH
- guanidinopropionic acid MeSH Prohlížeč
- guanidiny MeSH
- izoenzymy MeSH
- kreatinkinasa MeSH
- oxid uhelnatý MeSH
- propionáty MeSH
The effect of chronic administration of beta-guanidinopropionic acid (GPA) on the protein profiling, energy metabolism and right ventricular (RV) function was studied in the rat heart during the weaning and adolescence period. GPA was given in tap water (1-1.5%) using pair drink controls. The feeding of animals with GPA solution for a six week period resulted in elevation of heart to body weight ratio due to body growth retardation. GPA accumulated in the myocardium up to 67.37 +/- 5.3 mumoles.g dry weight and the tissue content of total creatine, phosphocreatine and ATP was significantly decreased to 15%, 9% and 65% of control values respectively. Total activity of creatine kinase (CK) was not changed, but the proportion of mitochondrial (Mi) CK isoenzyme was decreased; the percentage of MB isoenzyme of CK was significantly higher. GPA treatment resulted in an elevation of the content of cardiac collagenous proteins and decrease of non-collagenous proteins in the heart; in parallel, a decrease of the collagen I to collagen III ratio was detected. The function of the RV was assessed using an isolated perfused heart with RV performing pressure-volume work. As compared to pair-drink controls, RV function was significantly impaired the GPA group: at any given right atrial filling pressure, the RV systolic pressure and the rate of pressure development were decreased by almost a factor of two. Elevation of the RV diastolic pressure with increasing pulmonary artery diastolic pressure was also significantly steeper in the GPA group which also showed decrease of cardiac output, especially at high outflow resistance. It may be assumed that chronic administration of GPA deeply influenced metabolic parameters, protein profiles and contractile function of the developing heart. On the other hand, concentrations of glucose, total lipids and triglycerides in blood plasma were not affected. All these data confirm the concept that the CK system is of central importance both for heart function and for the regulation of normal growth of cardiac myocytes.
Zobrazit více v PubMed
Mol Cell Biochem. 1994 Apr-May;133-134:299-309 PubMed
Annu Rev Physiol. 1985;47:707-25 PubMed
Mol Cell Biochem. 1994 Apr-May;133-134:155-92 PubMed
J Mol Cell Cardiol. 1970 Sep;1(3):325-39 PubMed
Jpn Circ J. 1992 Apr;56(4):392-403 PubMed
Am J Physiol. 1988 Aug;255(2 Pt 1):C192-201 PubMed
Am J Physiol. 1990 Apr;258(4 Pt 2):H1151-8 PubMed
N Engl J Med. 1985 Oct 24;313(17):1050-4 PubMed
Biochem J. 1991 Jan 15;273(Pt 2):339-46 PubMed
Annu Rev Biochem. 1985;54:831-62 PubMed
Int Rev Cytol. 1991;124:137-86 PubMed
Physiol Res. 1995;44(2):139-42 PubMed
J Cell Biol. 1991 Apr;113(2):289-302 PubMed
Mol Cell Biochem. 1995 Jun 7-21;147(1-2):43-9 PubMed
J Am Coll Cardiol. 1986 May;7(5):1140-9 PubMed
Physiol Res. 1995;44(1):53-60 PubMed
Mol Cell Biochem. 1993 Dec 22;129(2):121-31 PubMed
Circ Res. 1991 Apr;68(4):1007-12 PubMed
Biochim Biophys Acta. 1984 Sep 14;805(1):79-88 PubMed
Mol Cell Biochem. 1994 Apr-May;133-134:51-66 PubMed
J Mol Cell Cardiol. 1988 Jun;20(6):465-79 PubMed
Mol Cell Biochem. 1994 Apr-May;133-134:125-44 PubMed
Biochim Biophys Acta. 1985 Oct 30;847(1):25-32 PubMed
J Biol Chem. 1991 Oct 25;266(30):20296-304 PubMed
Pflugers Arch. 1991 Sep;419(2):121-6 PubMed
Am J Physiol. 1990 Apr;258(4 Pt 2):H1144-50 PubMed
Am J Physiol. 1995 Sep;269(3 Pt 2):H1030-6 PubMed
Biochim Biophys Acta. 1993 Jul 26;1143(3):291-300 PubMed
Mol Cell Biochem. 1993 Dec 22;129(2):101-20 PubMed
Cardiovasc Res. 1995 May;29(5):611-5 PubMed
J Biol Chem. 1951 Nov;193(1):265-75 PubMed
Physiol Rev. 1990 Apr;70(2):247-77 PubMed
Physiol Res. 1993;42(4):235-42 PubMed
Mol Cell Biochem. 1994 Apr-May;133-134:9-11 PubMed
Biochem Med Metab Biol. 1987 Jun;37(3):374-84 PubMed
Physiol Bohemoslov. 1989;38(5):473-6 PubMed
Mol Cell Biochem. 1994 Apr-May;133-134:277-86 PubMed
Am J Physiol. 1990 May;258(5 Pt 2):H1274-80 PubMed
Pflugers Arch. 1984 Oct;402(2):185-9 PubMed