Influence on Enterobacter cloacae metabolism, cell-surface hydrophobicity and motility of suprainhibitory concentrations of carbapenems
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu srovnávací studie, časopisecké články
PubMed
11898339
DOI
10.1007/bf02817993
Knihovny.cz E-zdroje
- MeSH
- časové faktory MeSH
- Enterobacter cloacae chemie účinky léků fyziologie MeSH
- hydrofobní a hydrofilní interakce MeSH
- imipenem farmakologie MeSH
- karbapenemy farmakologie MeSH
- lidé MeSH
- meropenem MeSH
- pohyb účinky léků MeSH
- thienamyciny farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- imipenem MeSH
- karbapenemy MeSH
- meropenem MeSH
- thienamyciny MeSH
The impact of postantibiotic effect (PAE) of carbapenems (imipenem, meropenem) on the metabolism (biosynthesis of macromolecules, respiration), cell-surface hydrophobicity and motility of a clinical isolate of Enterobacter cloacae was examined. The metabolism was evaluated after 16 h and after 1 d of cultivation using 2x and 4x minimum inhibitory concentrations (MIC) of both antibiotics for the induction of PAE. Imipenem at 4 x MIC did not induce PAE. After a 16-h cultivation (in the postantibiotic phase of both carbapenems), inhibition of nucleosynthesis and protein synthesis was found; after a 1-d cultivation, during regrowth stimulation of mainly 14C-leucine incorporation was found. The presence of the exogenous intermediates of citrate cycle, viz. 2-oxoglutarate, increased the respiratory activity of the cells. The cell-surface hydrophobicity (evaluated by three methods--bacterial adhesion to hydrocarbon, nitrocellulose-filter test and salt-aggregation test) decreased after PAE of both carbapenems; meropenem was more effective. Motility (an important virulence factor) was inhibited in the postantibiotic phase of both carbapenems; the 4 x MIC caused a higher inhibition.
Zobrazit více v PubMed
J Antimicrob Chemother. 1989 Sep;24 Suppl A:225-31 PubMed
Clin Microbiol Infect. 1997 Feb;3(1):73-81 PubMed
J Basic Microbiol. 1998;38(3):221-7 PubMed
Folia Microbiol (Praha). 1998;43(1):104-8 PubMed
Antimicrob Agents Chemother. 1995 Jun;39(6):1314-9 PubMed
Folia Microbiol (Praha). 2000;45(6):485-90 PubMed
Chemotherapy. 1997 Nov-Dec;43(6):424-9 PubMed
Chemotherapy. 1992;38(6):388-94 PubMed
Antimicrob Agents Chemother. 1998 Nov;42(11):3006-8 PubMed
Antimicrob Agents Chemother. 1993 Dec;37(12):2678-83 PubMed
Chemotherapy. 1995 Jan-Feb;41(1):50-8 PubMed
Folia Microbiol (Praha). 1999;44(3):267-70 PubMed
J Antimicrob Chemother. 1989 Sep;24 Suppl A:9-29 PubMed
J Antimicrob Chemother. 1989 Oct;24(4):523-31 PubMed
Drugs. 1992 Sep;44(3):408-44 PubMed
J Antimicrob Chemother. 1990 Oct;26(4):593-4 PubMed
Eur J Clin Microbiol Infect Dis. 1992 May;11(5):469-71 PubMed
Can J Microbiol. 1981 Apr;27(4):458-60 PubMed
Pharmazie. 1997 Feb;52(2):157-9 PubMed
J Antimicrob Chemother. 1993 Oct;32(4):519-37 PubMed
Folia Microbiol (Praha). 2000;45(5):387-90 PubMed
J Antimicrob Chemother. 1995 May;35(5):585-92 PubMed
Folia Microbiol (Praha). 1996;41(3):228-32 PubMed
J Antimicrob Chemother. 1986 Dec;18 Suppl E:1-8 PubMed
Chemotherapy. 1993 May-Jun;39(3):153-62 PubMed
Infect Immun. 1984 May;44(2):540-3 PubMed
J Antimicrob Chemother. 1988 Nov;22(5):675-86 PubMed
Antimicrob Agents Chemother. 1984 Nov;26(5):678-82 PubMed
J Antimicrob Chemother. 1992 May;29(5):529-38 PubMed
J Med Microbiol. 1990 Mar;31(3):175-83 PubMed
J Antimicrob Chemother. 1989 Sep;24 Suppl A:1-7 PubMed
Antimicrob Agents Chemother. 1993 Oct;37(10):2200-5 PubMed
Antimicrob Agents Chemother. 1992 Oct;36(10):2118-24 PubMed
Diagn Microbiol Infect Dis. 1993 Jul;17(1):71-3 PubMed
J Antimicrob Chemother. 1993 Jun;31(6):881-92 PubMed
Some properties of Plesiomonas shigelloides treated with aminoglycosides