Rapid onset of nucleolar disintegration preceding cell cycle arrest in roscovitine-induced apoptosis of human MCF-7 breast cancer cells

. 2003 Sep 10 ; 106 (4) : 486-495.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid12845642

The aim of our study was to explore the antiproliferative and pro-apoptotic action of roscovitine (ROSC) on human breast cancer MCF-7 cells. We examined the effect of ROSC on cell proliferation, cell cycle progression, nucleolar morphology, posttranslational modifications of histones as well as on induction of apoptosis. The effects of ROSC on the argyrophilic nucleolar organizer regions (AgNORs) and nucleolar RNA of MCF-7 cells were marked: ROSC treatment changed the pattern of AgNORs in a time-dependent manner. The disintegration of nucleoli manifested by increasing number of nucleolar fragments already began at 6 hr posttreatment. This was accompanied by a redistribution of the nucleolin from the nucleolus beginning after 6 hr and preceded a decrease of histone acetylation and phosphorylation. Inhibition of DNA synthesis and accumulation of G(2)/M-arrested cells starting 6 hr posttreatment coincided with a strong increase of the p53 level and with an appearance of a few cells committed to undergo apoptosis. However, all these changes preceded the main wave of apoptosis, which occurred after 24 hr ROSC treatment as assessed by determination of the frequency of Annexin binding, activation of caspases as well as of DNA fragmentation. Onset of PARP-1 cleavage detected by immunoblotting and by immunohistochemistry 6 hr or 9 hr posttreatment, respectively, preceded for a few hours the DNA fragmentation detected in situ by TUNEL assay. Reconstitution of MCF-7 cells with caspase-3 did not change the kinetics of ROSC-induced apoptosis. Our results show that disintegration of nucleoli is an early marker of ROSC-induced changes. Cell cycle arrest precedes the main wave of apoptosis.

Zobrazit více v PubMed

Blagoskonny MV, Pardee AB. Exploiting cancer cell cycling for selective protection of normal cells. Cancer Res 2001; 61: 4301-5.

De Azevedo WF, Leclerc S, Meijer L, Havlicek L, Strnad M, Kim SH. Inhibition of cyclin-dependent kinases by purine analogues: crystal structure of human cdk2 complexed with roscovitine. Eur J Biochem 1997; 243: 518-26.

Meijer L, Borgne A, Mulner O, Chong JP, Blow JJ, Inagaki N, Inaga M, Delcros JG, Moulinoux JP. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 1997; 243: 527-36.

Edamatsu H, Gau CL, Nemoto T, Guo L, Tamanoi F. Cdk inhibitors, roscovitine and olomoucine, synergize with farnesyltransferase inhibitor (FTI) to induce efficient apoptosis of human cancer cell lines. Oncogene 2000; 27: 3059-68.

Gray N, Detivaud L, Doerig C, Meijer L. ATP-site directed inhibitors of cyclin-dependent kinases. Curr Med Chem 1999; 6: 859-75.

Filgueira de Azevedo W Jr, Gaspar RT, Canduri F, Camera JC Jr, Freitas da Silveira NJ. Molecular model of cyclin-dependent kinase 5 complexed with roscovitine. Biochem Biophys Res Commun 2002; 297: 1154-8.

Mgbonyebi OP, Russo J, Russo IH. Roscovitine induces cell death and morphological changes indicative of apoptosis in MDA-MB-231 breast cancer cells. Cancer Res 1999; 59: 1903-10.

Blagosklonny MV. P53: a ubiquitous target of anticancer drugs. Int J Cancer 2002; 98: 161-6.

Bargonetti J, Manfredi JJ. Multiple roles of the tumor suppressor p53. Curr Opin Oncol 2002; 14: 86-91.

Robles AI, Harris CC. p53-mediated apoptosis and genomic instability. Acta Oncol 2001; 40: 696-701.

Appella E, Anderson CW. Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 2001; 268: 2764-72.

Luo J, Nikolaev AY, Imai S-I, Chen D, Su F, Shiloh A, Guarente L, Gu W. Negative control of p53 by Sir2α promotes cell survival under stress. Cell 2001; 107: 137-48.

Vaziri H, Dessain SK, Eaton EN, Imai S-I, Frye RA, Pandita TK, Guarente L, Weinberg RA. hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase. Cell 2001; 107: 149-59.

Zhou Y, Santoro R, Grummt I. The chromatin remodeling complex NoRC targets HDAC1 to the ribosomal gene promoter and represses RNA polymerase transcription. EMBO J 2002; 21: 4632-40.

Maison C, Bailly D, Peters AH, Quivy JP, Roche D, Taddei A, Lachn M, Jeniwein T, Almouzni G. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet 2002; 30: 329-34.

Howe L, Auston D, Grant P, John S, Cook RG, Workman JL, Pillus L. Histone H3 specific acetyltransferases are essential for cell cycle progression. Genes Dev 2001; 15: 3144-54.

Belyaev ND, Houben A, Baranczewski P, Schubert I. Histone H4 acetylation in plant heterochromatin is altered during the cell cycle. Chromosoma 1997; 106: 193-7.

Houben A, Wako T, Furushima-Shimogawara R, Presting G, Kunzel G, Schubert II, Fukui K. Short communication: the cell cycle dependent phosphorylation of histone H3 is correlated with the condensation of plant mitotic chromosomes. Plant J 1999; 18: 675-9.

Jänicke RU, Sprengart ML, Wati MR, Porter AG. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 1998; 273: 9357-60.

Horky M, Wurzer G, Kotala V, Anton M, Vojtesek B, Vacha J, Wesierska-Gadek J. Segregation of nucleolar components coincides with caspase-3 activation in cisplatin-treated HeLa cells. J Cell Sci 2001; 114: 663-70.

Lövborg H, Wojciechowski J, Larsson R, Wesierska-Gadek J. Action of a novel anti-cancer agent, CHS 828, on mouse fibroblasts: increased sensitivity of cells lacking poly(ADP-ribose) polymerase-1. Cancer Res 2002; 62: 4206-11.

Wesierska-Gadek J, Bohrn E, Herceg Z, Wang Z-Q, Wurzer G. Differential susceptibility of normal and PARP knock-out mouse fibroblasts to proteasome inhibitors. J Cell Biochem 2000; 78: 681-96.

Wesierska-Gadek J, Schmid G. Overexpressed poly(ADP-ribose) polymerase delays the release of rat cells from p53-mediated G1 checkpoint. J Cell Biochem 2000; 80: 85-103.

Vindelov LL, Christensen IJ, Keiding N, Spang-Thomsen M, Nissen NI. Long-term storage of samples for flow cytometric DNA analysis. Cytometry 1983; 3: 317-22.

Wesierska-Gadek J, Penner E, Hitchman E, Kier P, Sauermann G. Nucleolar proteins B23 and C23 as target antigens in chronic graft-versus-host disease. Blood 1992; 79: 1081-6.

Wesierska-Gadek J, Schloffer D, Kotala V, Horky M. Escape of p53 protein from E6-mediated degradation in HeLa cells after cisplatin therapy. Int J Cancer 2002; 101: 128-36.

Tam SW, Shay JW, Pagano M. Differential expression and cell cycle regulation of the cyclin dependent kinase 4 inhibitor p16Ink4. Cancer Res 1994; 54: 5816-20.

Blow JJ, Hodgson B. Replication licensing-defining the proliferative state? Trends Cell Biol 2002; 12: 72-8.

David-Pfeuty D. Potent inhibitors of cyclin-dependent kinase 2 induce nuclear accumulation of wild-type p53 and nucleolar fragmentation in human untransformed and tumor-derived cells. Oncogene 1999; 18: 7409-22.

David-Pfeuty D, Nouvian-Dooghe Y, Sirri V, Roussel P, Hernandez-Verdun D. Common and reversible regulation of wild-type p53 function and of ribosomal biogenesis by protein kinases in human cells. Oncogene 2001; 20: 5951-63.

Yakisich JS, Boethius J, Lindblom IO, Wallstedt L, Vargas VI, Siden A, Cruz MH. Inhibition of DNA synthesis in human gliomas by roscovitine. Neuroreport 1999; 12: 2563-7.

Vitali L, Yakisich JS, Vita MF, Fernandez A, Settembrini L, Siden A, Cruz M, Carminatti H, Casas O, Idoyaga Vargas V. Roscovitine inhibits ongoing DNA synthesis in human cervical cancer. Cancer Lett 2002; 1: 7-12.

Kotala V, Uldrijan S, Horky M, Trbusek M, Strnad M, Vojtesek B. Potent induction of wild-type p53 transcription in tumour cells by a synthetic inhibitor of cyclin dependent kinases. Cell Mol Life Sci 2001; 58: 1333-9.

Ljungman M, Paulsen MT. The cyclin-dependent kinase inhibitor roscovitine inhibits RNA synthesis and triggers nuclear accumulation of p53 that is unmodified at Ser 15 and Lys382. Mol Pharmacol 2001; 60: 785-9.

Blagosklonny MV, Darzynkiewicz Z, Figg WD. Flavopiridol inversely affects p21WAF/CIP1 and p53 and protects p21-sensitive cells from paclitaxel. Cancer Biol Ther 2002; 1: 420-5.

Blagosklonny MV, Demidenko ZN, Fojo T. Inhibition of transcription results in accumulation of Wt p53 followed by delayed outburst of p53-inducible proteins: p53 as a sensor of transcriptional integrity. Cell Cycle 2002; 1: 67-74.

Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Wals WV, Plunkett BS, Vogelstein B, Fornace AJ Jr. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 1992; 71: 587-97.

Dutta A, Ruppert JM, Aster JC, Winchester E. Inhibition of DNA replication factor RPA by p53. Nature 1993; 365: 79-82.

Stewart N, Hicks GG, Paraskevas F, Mowat M. Evidence for a second cell cycle block at G2/M by p53. Oncogene 1995; 10: 109-15.

Cross SM, Sanchez CA, Morgan CA, Schimke MK, Ramel S, Idzerda RL, Raskind WH, Reid BJ. A p53-dependent mouse spindle checkpoint. Science 1995; 267: 1353-6.

Fukasawa K, Choi T, Kuriyama R, Rulong S, Vande Woude GF. Abnormal centrosome amplification in the absence of p53. Science 1996; 271: 1744-7.

Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 1991; 352: 345-7.

Goessens G. Nucleolar structure. Int Rev Cytol 1984; 87: 107-58.

Smith FG, Murray PG, Crocker J. Correlation between PCNA and AgNOR scores in non-Hodgkins's lymphomas using sequential staining technique. J Clin Pathol 1993; 46: 28-31.

Horky M, Kotala V, Anton M, Wesierska-Gadek J. Nucleolus and apoptosis. Ann NY Acad Sci 2002; 973: 258-64.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...