Segmental trisomy of chromosome 17: a mouse model of human aneuploidy syndromes
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
15755806
PubMed Central
PMC552979
DOI
10.1073/pnas.0500802102
PII: 0500802102
Knihovny.cz E-resources
- MeSH
- Aneuploidy * MeSH
- Maze Learning MeSH
- Chromosome Disorders genetics metabolism psychology MeSH
- Down Syndrome genetics MeSH
- Gene Expression MeSH
- Phenotype MeSH
- Gene Dosage MeSH
- Mice, Inbred Strains MeSH
- Humans MeSH
- RNA, Messenger genetics metabolism MeSH
- Disease Models, Animal MeSH
- Brain metabolism MeSH
- Mice, Mutant Strains MeSH
- Mice MeSH
- Syndrome MeSH
- Translocation, Genetic MeSH
- Trisomy * MeSH
- Chromosomes, Artificial, Bacterial genetics MeSH
- Chromosome Breakage genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- RNA, Messenger MeSH
Triplication of whole autosomes or large autosomal segments is detrimental to the development of a mammalian embryo. The trisomy of human chromosome (Chr) 21, known as Down's syndrome, is regularly associated with mental retardation and a variable set of other developmental anomalies. Several mouse models of Down's syndrome, triplicating 33-104 genes of Chr16, were designed in an attempt to analyze the contribution of specific orthologous genes to particular developmental features. However, a recent study challenged the concept of dosage-sensitive genes as a primary cause of an abnormal phenotype. To distinguish between the specific effects of dosage-sensitive genes and nonspecific effects of a large number of arbitrary genes, we revisited the mouse Ts43H/Ph segmental trisomy. It encompasses >310 known genes triplicated within the proximal 30 megabases (Mb) of Chr17. We refined the distal border of the trisomic segment to the interval bounded by bacterial artificial chromosomes RP23-277B13 (location 29.0 Mb) and Cbs gene (location 30.2 Mb). The Ts43H mice, viable on a mixed genetic background, exhibited spatial learning deficits analogous to those observed in Ts65Dn mice with unrelated trisomy. Quantitative analysis of the brain expression of 20 genes inside the trisomic interval and 12 genes lying outside on Chr17 revealed 1.2-fold average increase of mRNA steady-state levels of triplicated genes and 0.9-fold average down-regulation of genes beyond the border of trisomy. We propose that systemic comparisons of unrelated segmental trisomies, such as Ts65Dn and Ts43H, will elucidate the pathways leading from the triplicated sequences to the complex developmental traits.
See more in PubMed
Bailey, J. A., Gu, Z., Clark, R. A., Reinert, K., Samonte, R. V., Schwartz, S., Adams, M. D., Myers, E. W., Li, P. W. & Eichler, E. E. (2002) Science 297, 1003–1007. PubMed
Bailey, J. A., Church, D. M., Ventura, M., Rocchi, M. & Eichler, E. E. (2004) Genome Res. 14, 789–801. PubMed PMC
Tuzun, E., Bailey, J. A. & Eichler, E. E. (2004) Genome Res. 14, 493–506. PubMed PMC
Ohno, S. (1970) Evolution by Gene Duplication (Springer, New York).
Lynch, M. (2002) Science 297, 945–947. PubMed
Emanuel, B. S. & Shaikh, T. H. (2001) Nat. Rev. Genet. 2, 791–800. PubMed
Pearson, P. L. (2001) in Encyclopedia of Genetics, eds. Brenner, S. & Miller, J. H. (Academic, London), Vol. 4, pp. 2056–2058.
Delabar, J. M., Theophile, D., Rahmani, Z., Chettouh, Z., Blouin, J. L., Prieur, M., Noel, B. & Sinet, P. M. (1993) Eur. J. Hum. Genet. 1, 114–124. PubMed
Korenberg, J. R., Chen, X. N., Schipper, R., Sun, Z., Gonsky, R., Gerwehr, S., Carpenter, N., Daumer, C., Dignan, P., Disteche, C., et al. (1994) Proc. Natl. Acad. Sci. USA 91, 4997–5001. PubMed PMC
Reeves, R. H., Baxter, L. L. & Richtsmeier, J. T. (2001) Trends Genet. 17, 83–88. PubMed
Olson, L. E., Richtsmeier, J. T., Leszl, J. & Reeves, R. H. (2004) Science 306, 687–690. PubMed PMC
Reeves, R. H., Irving, N. G., Moran, T. H., Wohn, A., Kitt, C., Sisodia, S. S., Schmidt, C., Bronson, R. T. & Davisson, M. T. (1995) Nat. Genet. 11, 177–184. PubMed
Sago, H., Carlson, E. J., Smith, D. J., Kilbridge, J., Rubin, E. M., Mobley, W. C., Epstein, C. J. & Huang, T. T. (1998) Proc. Natl. Acad. Sci. USA 95, 6256–6261. PubMed PMC
Dierssen, M., Fillat, C., Crnic, L., Arbones, M., Florez, J. & Estivill, X. (2001) Physiol. Behav. 73, 859–871. PubMed
Lyon, M. & Meredith, R. (1966) Cytogenetics 5, 335–354. PubMed
Searle, A. G., Ford, C. E., Evans, E. P., Beechey, C. V., Burtenshaw, M. D., Clegg, H. M. & Papworth, D. G. (1974) Mutat. Res. 22, 157–174. PubMed
Beechey, C. & Evans, E. (1996) in Genetic Variants and Strains of the Laboratory Mouse, eds. Lyon, M., Rastan, S. & Brown, S. (Oxford Univ. Press, Oxford), Vol. 2, pp. 1469–1470.
Gregorova, S. & Forejt, J. (2000) Folia Biol. (Prague) 46, 31–41. PubMed
Forejt, J. & Gregorova, S. (1992) Cell 70, 443–450. PubMed
Szabo, P. & Mann, J. (1995) Genes Dev. 9, 3097–3108. PubMed
Vacik, T. & Forejt, J. (2003) Genomics 82, 261–268. PubMed
Chung, Y. J., Jonkers, J., Kitson, H., Fiegler, H., Humphray, S., Scott, C., Hunt, S., Yu, Y., Nishijima, I., Velds, A., et al. (2004) Genome Res. 14, 188–196. PubMed PMC
Kaminsky, Y. & Krekule, I. (1997) Physiol. Res. 46, 223–231. PubMed
Forejt, J., Capkova, J. & Gregorova, S. (1980) Genet. Res. 35, 165–177. PubMed
Fiegler, H., Carr, P., Douglas, E. J., Burford, D. C., Hunt, S., Scott, C. E., Smith, J., Vetrie, D., Gorman, P., Tomlinson, I. P. & Carter, N. P. (2003) Genes Chromosomes Cancer 36, 361–374. PubMed
Hattori, M., Fujiyama, A., Taylor, T. D., Watanabe, H., Yada, T., Park, H. S., Toyoda, A., Ishii, K., Totoki, Y., Choi, D. K., et al. (2000) Nature 405, 311–319. PubMed
Antonarakis, S. E., Lyle, R., Dermitzakis, E. T., Reymond, A. & Deutsch, S. (2004) Nat. Rev. Genet. 5, 725–738. PubMed
Rahmani, Z., Blouin, J. L., Creau-Goldberg, N., Watkins, P. C., Mattei, J. F., Poissonnier, M., Prieur, M., Chettouh, Z., Nicole, A., Aurias, A., et al. (1989) Proc. Natl. Acad. Sci. USA 86, 5958–5962. PubMed PMC
Shapiro, B. L. (1997) Hum. Genet. 99, 421–423. PubMed
Shapiro, B. L. (1983) Am. J. Med. Genet. 14, 241–269. PubMed
Pritchard, M. A. & Kola, I. (1999) J. Neural Transm. 57, Suppl., 293–303. PubMed
Forejt, J., Vacik, T. & Gregorova, S. (2003) Comp. Funct. Genomics 4, 647–652. PubMed PMC
Davisson, M. & Costa, A. (1999) in Mouse Models in the Study of Genetic Neurological Disorders, ed. Popko, K. (Kluwer Academic/Plenum, New York), pp. 297–327.
Holtzman, D. M., Santucci, D., Kilbridge, J., Chua-Couzens, J., Fontana, D. J., Daniels, S. E., Johnson, R. M., Chen, K., Sun, Y., Carlson, E., et al. (1996) Proc. Natl. Acad. Sci. USA 93, 13333–13338. PubMed PMC
Escorihuela, R. M., Vallina, I. F., Martinez-Cue, C., Baamonde, C., Dierssen, M., Tobena, A., Florez, J. & Fernandez-Teruel, A. (1998) Neurosci. Lett. 247, 171–174. PubMed
Escorihuela, R. M., Fernandez-Teruel, A., Vallina, I. F., Baamonde, C., Lumbreras, M. A., Dierssen, M., Tobena, A. & Florez, J. (1995) Neurosci. Lett. 199, 143–146. PubMed
Coussons-Read, M. E. & Crnic, L. S. (1996) Behav. Genet. 26, 7–13. PubMed
Epstein, C. J., Cox, D. R. & Epstein, L. B. (1985) Ann. N.Y. Acad. Sci. 450, 157–168. PubMed
Gregorova, S., Baranov, V. & Forejt, J. (1981) Folia Biol. (Prague) 27, 171–177. PubMed
Amano, K., Sago, H., Uchikawa, C., Suzuki, T., Kotliarova, S. E., Nukina, N., Epstein, C. J. & Yamakawa, K. (2004) Hum. Mol. Genet. 13, 1333–1340. PubMed
Lyle, R., Gehrig, C., Neergaard-Henrichsen, C., Deutsch, S. & Antonarakis, S. E. (2004) Genome Res. 14, 1268–1274. PubMed PMC
FitzPatrick, D. R., Ramsay, J., McGill, N. I., Shade, M., Carothers, A. D. & Hastie, N. D. (2002) Hum. Mol. Genet. 11, 3249–3256. PubMed
Mao, R., Zielke, C. L., Zielke, H. R. & Pevsner, J. (2003) Genomics 81, 457–467. PubMed
Saran, N. G., Pletcher, M. T., Natale, J. E., Cheng, Y. & Reeves, R. H. (2003) Hum. Mol. Genet. 12, 2013–2019. PubMed
Kahlem, P., Sultan, M., Herwig, R., Steinfath, M., Balzereit, D., Eppens, B., Saran, N. G., Pletcher, M. T., South, S. T., Stetten, G., et al. (2004) Genome Res. 14, 1258–1267. PubMed PMC