Coupling of secondary active transport with a deltamu-H+
Language English Country United States Media print
Document type Journal Article, Review
PubMed
18251428
DOI
10.1007/bf00751052
Knihovny.cz E-resources
- MeSH
- Models, Biological MeSH
- Electrochemistry MeSH
- Ion Transport physiology MeSH
- Kinetics MeSH
- Hydrogen-Ion Concentration MeSH
- Membrane Potentials MeSH
- Proton-Motive Force physiology MeSH
- Thermodynamics MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Most nutrients and ions in bacteria, yeasts, algae, and plants are transported uphill at the expense of a gradient of the electrochemical potential of protons deltamu-H+ (a type of secondary active transport). Diagnosis of such transports rests on the determination of the transmembrane electrical potential difference deltapsi and the difference of pH at the two membrane sides. The behavior of kinetic parameters K(T) (the half-saturation constant) and J(max), (the maximum rate of transport) upon changing driving ion concentrations and electrical potentials may be used to determine the molecular details of the transport reaction. Equilibrium accumulation ratios of driven solutes are expected to be in agreement with the deltapsi and deltapH measured independently, as well as with the Haldane-type expression involving K(T) and J(max). Different stoichiometries of H+/solute, as well as intramembrane effects of pH and deltapsi, may account for some of the observed inconsistencies.
See more in PubMed
Folia Microbiol (Praha). 1978;23(1):18-26 PubMed
Biochim Biophys Acta. 1979 Feb 20;551(1):197-206 PubMed
Biochim Biophys Acta. 1981 Apr 22;643(1):265-8 PubMed
J Clin Invest. 1959 May;38(5):720-9 PubMed
Eur J Biochem. 1977 Oct 17;80(1):97-102 PubMed
Biochim Biophys Acta. 1972 Feb 11;255(2):442-61 PubMed
Biochim Biophys Acta. 1982 Sep 27;698(3):243-51 PubMed
Biochem J. 1973 Aug;134(4):1031-43 PubMed
Ann N Y Acad Sci. 1980;339:46-52 PubMed
Biochemistry. 1979 Aug 21;18(17):3691-7 PubMed
Biochem J. 1975 Mar;146(3):705-12 PubMed
Biochim Biophys Acta. 1976 Sep 21;448(1):133-42 PubMed
Biochim Biophys Acta. 1981 Dec 30;639(3-4):197-223 PubMed
FEBS Lett. 1976 Jun 1;65(2):175-8 PubMed
Eur J Biochem. 1976 Nov 1;70(1):197-204 PubMed
J Membr Biol. 1973;14(4):305-38 PubMed
Physiol Rev. 1981 Apr;61(2):296-434 PubMed
FEBS Lett. 1982 Apr 5;140(1):22-6 PubMed
Biochemistry. 1980 Jul 22;19(15):3585-90 PubMed
Biochem J. 1982 Nov 15;208(2):459-64 PubMed
Mol Cell Biochem. 1977 Mar 21;15(1):27-44 PubMed
J Membr Biol. 1976 Jun 30;27(4):317-34 PubMed
Biochim Biophys Acta. 1972 Nov 2;288(2):380-9 PubMed
J Bioenerg. 1973 Jan;4(1):63-91 PubMed
Biochemistry. 1979 Oct 16;18(21):4487-99 PubMed
Biochim Biophys Acta. 1976 Aug 4;443(1):49-63 PubMed
J Biol Chem. 1952 Jan;194(1):57-68 PubMed
J Biol Chem. 1957 Sep;228(1):97-111 PubMed
FEBS Lett. 1978 Mar 1;87(1):157-60 PubMed
Biochem J. 1981 Feb 15;194(2):433-41 PubMed
J Biol Chem. 1980 Jan 25;255(2):433-40 PubMed
Biochem J. 1979 Nov 15;184(2):441-9 PubMed
Rev Physiol Biochem Pharmacol. 1978;83:35-88 PubMed
Biochim Biophys Acta. 1977 Nov 1;470(3):484-91 PubMed
Biochim Biophys Acta. 1980 Nov 4;602(2):419-32 PubMed
Biochim Biophys Acta. 1980 May 27;604(1):91-126 PubMed
FEBS Lett. 1976 Jul 15;66(2):159-63 PubMed
Biochim Biophys Acta. 1970 Aug 4;216(1):1-12 PubMed
Eur J Biochem. 1982 Apr 1;123(2):447-53 PubMed
Effect of external pH on acidification and excretion of ethanol intermediates by Candida utilis
Absence of glucose-stimulated transport in yeast protoplasts