Faithful inheritance of cytosine methylation patterns in repeated sequences of the allotetraploid tobacco correlates with the expression of DNA methyltransferase gene families from both parental genomes
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Diploidy MeSH
- DNA, Plant genetics MeSH
- DNA (Cytosine-5-)-Methyltransferases classification genetics metabolism MeSH
- Epigenesis, Genetic MeSH
- Gene Expression MeSH
- Phylogeny MeSH
- Genome, Plant MeSH
- Cloning, Molecular MeSH
- DNA Methylation genetics MeSH
- Molecular Sequence Data MeSH
- Multigene Family * MeSH
- Polyploidy MeSH
- Repetitive Sequences, Nucleic Acid MeSH
- Genes, Plant * MeSH
- Base Sequence MeSH
- Selection, Genetic MeSH
- Nicotiana enzymology genetics MeSH
- Tissue Distribution MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Plant MeSH
- DNA (Cytosine-5-)-Methyltransferases MeSH
The widespread occurrence of epigenetic alterations in allopolyploid species deserves scrutiny that DNA methylation systems may be perturbed by interspecies hybridization and polyploidization. Here we studied the genes involved in DNA methylation in Nicotiana tabacum (tobacco) allotetraploid containing S and T genomes inherited from Nicotiana sylvestris and Nicotiana tomentosiformis progenitors. To determine the inheritance of DNA methyltransferase genes and their expression patterns we examined three major DNA methyltransferase families (MET1, CMT3 and DRM) from tobacco and the progenitor species. Using Southern blot hybridization and PCR-based methods (genomic CAPS), we found that the parental loci of these gene families are retained in tobacco. Homoeologous expression was found in all tissues examined (leaf, root, flower) suggesting that DNA methyltransferase genes were probably not themselves targets of uniparental epigenetic silencing for over thousands of generations of allotetraploid evolution. The level of CG and CHG methylation of selected high-copy repeated sequences was similar and high in tobacco and its diploid progenitors. We speculate that natural selection might favor additive expression of parental DNA methyltransferase genes maintaining high levels of DNA methylation in tobacco, which has a repeat-rich heterochromatic genome.
See more in PubMed
Mol Phylogenet Evol. 2004 Oct;33(1):75-90 PubMed
Genome. 2002 Aug;45(4):626-33 PubMed
Curr Opin Plant Biol. 2007 Oct;10(5):528-33 PubMed
Mol Genet Genomics. 2002 Dec;268(4):510-7 PubMed
Chromosoma. 2000 Jul;109(4):245-58 PubMed
Nucleic Acids Res. 1998 Apr 1;26(7):1628-35 PubMed
Nucleic Acids Res. 1994 Jan 11;22(1):1-10 PubMed
Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4979-84 PubMed
J Biol Chem. 2003 Oct 24;278(43):42386-93 PubMed
Gene. 2008 Feb 15;409(1-2):72-82 PubMed
Nature. 1998 May 7;393(6680):68-72 PubMed
Curr Top Microbiol Immunol. 2006;301:67-122 PubMed
Science. 2008 Apr 25;320(5875):481-3 PubMed
Plant J. 2006 Dec;48(6):907-19 PubMed
Plant Mol Biol. 1991 May;16(5):753-70 PubMed
Genetics. 2004 Apr;166(4):1935-46 PubMed
Proc Natl Acad Sci U S A. 1984 Dec;81(24):8014-8 PubMed
BMC Genomics. 2008 Jun 13;9:286 PubMed
Genetics. 1998 May;149(1):307-18 PubMed
Plant Physiol. 2004 Mar;134(3):1191-9 PubMed
Chromosoma. 2000 Jun;109(3):161-72 PubMed
Heredity (Edinb). 2004 Apr;92(4):352-8 PubMed
Plant Mol Biol. 1997 Oct;35(3):313-21 PubMed
Nucleic Acids Res. 2006 May 02;34(8):2280-93 PubMed
Heredity (Edinb). 2002 Jan;88(1):19-25 PubMed
Am J Bot. 2006 Jun;93(6):875-83 PubMed
Genetics. 2006 Jan;172(1):507-17 PubMed
Curr Opin Plant Biol. 2005 Apr;8(2):135-41 PubMed
Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10502-6 PubMed
Plant Mol Biol. 2000 Jun;43(2-3):189-201 PubMed
Trends Plant Sci. 2006 Oct;11(10):485-91 PubMed
Planta. 2008 Aug;228(3):391-9 PubMed
Nucleic Acids Res. 1989 Jun 12;17(11):4377 PubMed
Mol Biol Evol. 1999 Mar;16(3):311-20 PubMed
EMBO J. 1987 Jan;6(1):43-8 PubMed
EMBO J. 1994 May 1;13(9):2084-8 PubMed
Plant Physiol. 2002 Jun;129(2):733-46 PubMed
Mol Biol Evol. 1987 Jul;4(4):406-25 PubMed
Theor Appl Genet. 1995 Sep;91(4):659-64 PubMed
Nucleic Acids Res. 1991 Oct 25;19(20):5561-7 PubMed
Chromosome Res. 1998 Dec;6(8):649-51 PubMed
FEBS Lett. 2000 Feb 4;467(1):47-51 PubMed
Plant Physiol. 2005 Sep;139(1):275-86 PubMed
Genome. 2008 Aug;51(8):547-59 PubMed
Planta. 2006 Sep;224(4):750-60 PubMed
Mol Phylogenet Evol. 2007 Aug;44(2):911-9 PubMed
New Phytol. 2007;175(4):756-763 PubMed
Plant Cell Physiol. 2007 May;48(5):745-52 PubMed
Plant Cell. 2001 Aug;13(8):1919-28 PubMed
Theor Appl Genet. 1989 Jul;78(1):77-80 PubMed
Genomics. 2007 Oct;90(4):530-41 PubMed
Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8089-91 PubMed
Mol Gen Genet. 1998 Aug;259(2):133-41 PubMed
Am J Bot. 2002 Jun;89(6):921-8 PubMed
New Phytol. 2005 Oct;168(1):241-52 PubMed
Chromosoma. 1997 Nov;106(6):369-79 PubMed
Science. 2001 Jun 15;292(5524):2077-80 PubMed
New Phytol. 2007;174(3):658-668 PubMed
Genes Genet Syst. 2003 Dec;78(6):409-18 PubMed
EMBO J. 2000 Oct 2;19(19):5194-201 PubMed
Curr Opin Genet Dev. 2004 Dec;14(6):686-91 PubMed
Mol Genet Genomics. 2007 Jul;278(1):1-15 PubMed
Plant Mol Biol. 1999 Oct;41(3):387-401 PubMed
Ann Bot. 2007 May;99(5):845-56 PubMed
Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1820-4 PubMed
BMC Bioinformatics. 2008 Jan 25;9:53 PubMed
Curr Opin Genet Dev. 2008 Apr;18(2):204-11 PubMed
Genes Dev. 1998 May 1;12(9):1381-9 PubMed
Am J Bot. 2003 Jul;90(7):988-96 PubMed
Plant Cell Physiol. 2000 Apr;41(4):448-57 PubMed
New Phytol. 2005 Apr;166(1):291-303 PubMed
Comput Appl Biosci. 1992 Jun;8(3):275-82 PubMed
Ann Bot. 2008 Apr;101(6):805-14 PubMed
Three TERT genes in Nicotiana tabacum
GENBANK
AM946602, AM946603, AM946604, AM946605, AM946606, AM946607, AM946608, AM946609, AM946610, AM946611, AM946612, AM946613, AM946614, AM946615, AM946616, AM946617, AM946618, AM946619, AM946620, FM872474, FM872475, FM872476