The 7B-1 mutation in tomato (Solanum lycopersicum L.) confers a blue light-specific lower sensitivity to coronatine, a toxin produced by Pseudomonas syringae pv. tomato

. 2009 ; 60 (4) : 1219-30. [epub] 20090212

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid19213807

The spontaneous mutant 7B-1 in tomato (Solanum lycopersicum=Lycopersicon esculentum) is a photoperiod-dependent male-sterile mutant previously reported as resistant to various abiotic stresses specifically under blue light. Since this finding improved the potential of 7B-1's use in breeding programmes, its susceptibility to stress induced by coronatine (COR), the phytotoxine produced by several Pseudomonas syringae strains, was assessed in this study. The 7B-1 mutant was found to be less sensitive than the corresponding wild type (WT) to COR treatment in a blue light-dependent manner. Treatment of WT and 7B-1 plants with COR induced a strong accumulation of salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA) in hypocotyls. Interestingly, accumulation of ABA and SA in the 7B-1 mutant was distinctly greater than in WT, especially in blue light. Based on the cross-talk between SA- and JA-signalling pathways, expression analysis of NPR1 and COI1 genes, respectively involved in these pathways, was investigated in COR-stressed plants. The blue light-specific lower sensitivity of 7B-1 plants to COR was found to be associated with blue light-specific overexpression of the NPR1 gene. These data suggest that the SA-dependent NPR1-dependent pathway could be involved in the lower sensitivity of the 7B-1 mutant to COR. The role of anthocyanins and ABA accumulation during the response to COR is also discussed in the present study.

Citace poskytuje Crossref.org

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...