Prospective new biological therapies for rheumatoid arthritis
Language English Country Netherlands Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
PubMed
19328245
DOI
10.1016/j.autrev.2009.03.010
PII: S1568-9972(09)00086-X
Knihovny.cz E-resources
- MeSH
- Biological Therapy * trends MeSH
- Cytokines immunology MeSH
- Antigens, Differentiation immunology MeSH
- Protein Kinase Inhibitors therapeutic use MeSH
- Humans MeSH
- Lymphocyte Depletion MeSH
- RNA, Small Interfering genetics MeSH
- Cell Communication drug effects immunology MeSH
- Antibodies, Monoclonal MeSH
- Arthritis, Rheumatoid genetics immunology therapy MeSH
- RNA Interference MeSH
- Signal Transduction drug effects immunology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Cytokines MeSH
- Antigens, Differentiation MeSH
- Protein Kinase Inhibitors MeSH
- RNA, Small Interfering MeSH
- Antibodies, Monoclonal MeSH
Advances in the current knowledge of pathogenetic mechanisms of rheumatoid arthritis have contributed to the development of biological therapy, and translated research findings into clinical practice. TNF-alpha (infliximab, etanercept, adalimumab), IL-1 (anakinra) and IL-6 (tocilizumab) inhibitors, a B-cell depleting agent (rituximab) and a drug blocking T-cell costimulation (abatacept) have been approved for rheumatoid arthritis. The progress in manufacturing biotechnology has contributed to the development of several other prospective agents that may form the basis for the therapy of rheumatoid arthritis in the near future. New or modified TNF-alpha inhibitors (golimumab, certolizumab pegol), new monoclonal antibodies against other cytokines (e.g. IL-1, IL-6, IL-12, IL-15, IL-17, IL-23), and other agents targeting B-cell depletion (e.g. ocrelizumab, ofatumumab) are in various stages of development. Many pharmaceutical companies have focused on developing small molecule inhibitors with possible peroral administration, which are considered promising drugs for rheumatoid arthritis. In most cases, these small molecules inhibit cellular kinases (e.g. p38, JAK or Syk) that mediate the signaling and transcription of proinflammatory genes. In this review, we describe the cytokine inhibitors and modulators of the immune response currently in ongoing clinical trials, the results of which may further expand the spectrum of efficient therapies for chronic autoimmune diseases.
References provided by Crossref.org