Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural
Grantová podpora
P20 GM103472
NIGMS NIH HHS - United States
R01EB000840
NIBIB NIH HHS - United States
R01 EB006841
NIBIB NIH HHS - United States
R01 EB000840
NIBIB NIH HHS - United States
P20 RR021938
NCRR NIH HHS - United States
R01 EB020407
NIBIB NIH HHS - United States
PubMed
20561919
PubMed Central
PMC4347842
DOI
10.1016/j.neuroimage.2010.05.063
PII: S1053-8119(10)00796-2
Knihovny.cz E-zdroje
- MeSH
- algoritmy * MeSH
- dospělí MeSH
- interpretace obrazu počítačem metody MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- nervová síť fyziologie MeSH
- počítačové zpracování signálu MeSH
- reprodukovatelnost výsledků MeSH
- senzitivita a specificita MeSH
- sluchová percepce fyziologie MeSH
- sluchové evokované potenciály fyziologie MeSH
- sluchové korové centrum fyziologie MeSH
- vylepšení obrazu metody MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
Increasing interest in understanding dynamic interactions of brain neural networks leads to formulation of sophisticated connectivity analysis methods. Recent studies have applied Granger causality based on standard multivariate autoregressive (MAR) modeling to assess the brain connectivity. Nevertheless, one important flaw of this commonly proposed method is that it requires the analyzed time series to be stationary, whereas such assumption is mostly violated due to the weakly nonstationary nature of functional magnetic resonance imaging (fMRI) time series. Therefore, we propose an approach to dynamic Granger causality in the frequency domain for evaluating functional network connectivity in fMRI data. The effectiveness and robustness of the dynamic approach was significantly improved by combining a forward and backward Kalman filter that improved estimates compared to the standard time-invariant MAR modeling. In our method, the functional networks were first detected by independent component analysis (ICA), a computational method for separating a multivariate signal into maximally independent components. Then the measure of Granger causality was evaluated using generalized partial directed coherence that is suitable for bivariate as well as multivariate data. Moreover, this metric provides identification of causal relation in frequency domain, which allows one to distinguish the frequency components related to the experimental paradigm. The procedure of evaluating Granger causality via dynamic MAR was demonstrated on simulated time series as well as on two sets of group fMRI data collected during an auditory sensorimotor (SM) or auditory oddball discrimination (AOD) tasks. Finally, a comparison with the results obtained from a standard time-invariant MAR model was provided.
Zobrazit více v PubMed
Aguirre GK, Zarahn E, D'esposito M. The variability of human, BOLD hemodynamic responses. Neuroimage. 1998;8:360–369. PubMed
Akaike H. A new look at the statistical model identification. IEEE transactions on automatic control. 1974;19:716–723.
Ancona N, Marinazzo D, Stramaglia S. Radial basis function approach to nonlinear Granger causality of time series. Physical Review E. 2004;70:056221. PubMed
Arnold M, Milner XHR, Witte H, Bauer R, Braun C. Adaptive AR modeling of nonstationary time series by means of Kalman filtering. IEEE Transactions on Biomedical Engineering. 1998;45:553–562. PubMed
Baccala LA, Sameshima K. Partial directed coherence: a new concept in neural structure determination. Biological Cybernetics. 2001;84:463–474. PubMed
Baccala LA, Sameshima K, Takahashi DY, Arnaldo AD. Generalized partial directed coherence. In: IEEE, editor. Proceedings of the 15th International Conference on Digital Signal Processing; 2007. pp. 162–166.
Baccala LA, Takahashi DY, Sameshima K. Computer intensive testing for the influence between time series. In: Schelter B, Winterhalder M, Timmer J, editors. Handbook of time series analysis. Weinheim: Wiley-Vch Verlag GmbH & Co. KGaA; 2006.
Bell AJ, Sejnowski TJ. An information-maximization approach to blind separation and blind deconvolution. Neural Computation. 1995;7:1129–1159. PubMed
Berns GS, Song AW, Mao H. Continuous functional magnetic resonance imaging reveals dynamic nonlinearities of "dose-response" curves for finger opposition. Journal of Neuroscience. 1999;19:17. PubMed PMC
Calhoun VD, Adali T. Unmixing fMRI with independent component analysis. IEEE Engineering in Medicine and Biology Magazine. 2006;25:79–90. PubMed
Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping. 2001a;14:140–151. PubMed PMC
Calhoun VD, Adali T, Pearlson GD, Pekar JJ. Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Human Brain Mapping. 2001b;13:43–53. PubMed PMC
Calhoun VD, Adali T, Pekar JJ, Pearlson GD. Latency (in)sensitive ICA Group independent component analysis of fMRI data in the temporal frequency domain. NeuroImage. 2003;20:1661–1669. PubMed
Chang C, Thomason ME, Glover GH. Mapping and correction of vascular hemodynamic latency in the BOLD signal. Neuroimage. 2008;43:90–102. PubMed PMC
Chen Y, Bressler SL, Ding M. Frequency decomposition of conditional Granger causality and application to multivariate neural field potential data. Journal of neuroscience methods. 2006;150:228–237. PubMed
Clark VP, Fannon S, Lai S, Benson R, Bauer L. Responses to rare visual target and distractor stimuli using event-related fMRI. Journal of Neurophysiology. 2000;83:3133–3139. PubMed
Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski P, Moritz CH, Quigley MA, Meyerand ME. Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data. American Journal of Neuroradiology. 2001;22:1326–1333. PubMed PMC
David O, Guillemain I, Saillet S, Reyt S, Deransart C, Segebarth C, Depaulis A. Identifying neural drivers with functional MRI: an electrophysiological validation. PLoS Biology. 2008;6:2683–2697. PubMed PMC
Demirci O, Stevens MC, Andreasen NC, Michael A, Liu J, White T, Pearlson GD, Clark VP, Calhoun VD. Investigation of relationships between fMRI brain networks in the spectral domain using ICA and Granger causality reveals distinct differences between schizophrenia patients and healthy controls. Neuroimage. 2009;46:419–431. PubMed PMC
Deshpande G, Hu X, Stilla R, Sathian K. Effective connectivity during haptic perception: A study using Granger causality analysis of functional magnetic resonance imaging data. Neuroimage. 2008;40:1807–1814. PubMed PMC
Deshpande G, LaConte S, James GA, Peltier S, Hu X. Multivariate Granger causality analysis of fMRI data. Human Brain Mapping. 2009;30:1361–1373. PubMed PMC
Deshpande G, Sathian K, Hu X. Effect of hemodynamic variability on Granger causality analysis of fMRI. NeuroImage. 2010 PubMed PMC
Dhamala M, Rangarajan G, Ding M. Analyzing information flow in brain networks with nonparametric Granger causality. NeuroImage. 2008;41:354–362. PubMed PMC
Florin E, Gross J, Pfeifer J, Fink GR, Timmermann L. The effect of filtering on Granger causality based multivariate causality measures. NeuroImage. 2010;50:577–588. PubMed
Fraser D, Potter J. The optimum linear smoother as a combination of two optimum linear filters. IEEE Transactions on Automatic Control. 1969;14:387–390.
Freiwald WA, Valdes P, Bosch J, Biscay R, Jimenez JC, Rodriguez LM, Rodriguez V, Kreiter AK, Singer W. Testing non-linearity and directedness of interactions between neural groups in the macaque inferotemporal cortex. Journal of Neuroscience Methods. 1999;94:105–119. PubMed
Friston KJ. Functional and effective connectivity in neuroimaging: a synthesis. Human Brain Mapping. 1994;2:56–78.
Friston KJ, Harrison L, Penny W. Dynamic causal modelling. Neuroimage. 2003;19:1273–1302. PubMed
Gaschler-Markefski B, Baumgart F, Tempelmann C, Schindler F, Stiller D, Heinze HJ, Scheich H. Statistical methods in functional magnetic resonance imaging with respect to nonstationary time-series: auditory cortex activity. Magnetic Resonance in Medicine. 1997;38:811–820. PubMed
Geweke J. Measurement of linear dependence and feedback between multiple time series. Journal of the American Statistical Association. 1982;77:304–313.
Geweke J. Measures of conditional linear dependence and feedback between time series. Journal of the American Statistical Association. 1984;79:907–915.
Goebel R, Roebroeck A, Kim DS, Formisano E. Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magnetic resonance imaging. 2003;21:1251–1261. PubMed
Granger C. Investigating causal relations by econometric models and cross-spectral methods. Econometrica: Journal of the Econometric Society. 1969;37:424–438.
Guo S, Seth AK, Kendrick KM, Zhou C, Feng J. Partial Granger causality--Eliminating exogenous inputs and latent variables. Journal of Neuroscience Methods. 2008;172:79–93. PubMed
Handwerker D, Ollinger J, D'Esposito M. Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neuroimage. 2004;21:1639–1651. PubMed
Haykin S. Adaptive filter theory. Prentice hall; 2002.
Hesse W, Möller E, Arnold M, Schack B. The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies. Journal of Neuroscience Methods. 2003;124:27–44. PubMed
Jafri MJ, Pearlson GD, Stevens M, Calhoun VD. A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage. 2008;39:1666–1681. PubMed PMC
Kalman RE. A new approach to linear filtering and prediction problems. Journal of basic Engineering. 1960;82:35–45.
Kaminski M, Ding M, Truccolo WA, Bressler SL. Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biological Cybernetics. 2001;85:145–157. PubMed
Kaminski MJ, Blinowska KJ. A new method of the description of the information flow in the brain structures. Biological Cybernetics. 1991;65:203–210. PubMed
Kiehl KA, Stevens MC, Laurens KR, Pearlson G, Calhoun VD, Liddle PF. An adaptive reflexive processing model of neurocognitive function: supporting evidence from a large scale (n= 100) fMRI study of an auditory oddball task. Neuroimage. 2005;25:899–915. PubMed
Korzeniewska A, Manczak M, Kaminski M, Blinowska KJ, Kasicki S. Determination of information flow direction among brain structures by a modified directed transfer function (dDTF) method. Journal of neuroscience methods. 2003;125:195–207. PubMed
Li YO, Adali T, Calhoun VD. Estimating the number of independent components for functional magnetic resonance imaging data. Human Brain Mapping. 2007;28:1251–1266. PubMed PMC
Liao W, Mantini D, Zhang Z, Pan Z, Ding J, Gong Q, Yang Y, Chen H. Evaluating the effective connectivity of resting state networks using conditional Granger causality. Biological Cybernetics. 2010;102:57–69. PubMed
Liu J, Kiehl KA, Pearlson G, Perrone-Bizzozero NI, Eichele T, Calhoun VD. Genetic determinants of target and novelty-related event-related potentials in the auditory oddball response. Neuroimage. 2009;46:809–816. PubMed PMC
Londei A, D'Ausilio A, Basso D, Belardinelli MO. A new method for detecting causality in fMRI data of cognitive processing. Cognitive Processing. 2006;7:42–52. PubMed
Londei A, D'Ausilio A, Basso D, Sestieri C, Del Gratta C, Romani GL, Olivetti Belardinelli M. Brain network for passive word listening as evaluated with ICA and Granger causality. Brain Research Bulletin. 2007;72:284–292. PubMed
Lütkepohl H. New introduction to multiple time series analysis. Springer; 2005.
Marinazzo D, Pellicoro M, Stramaglia S. Kernel method for nonlinear Granger causality. Physical Review Letters. 2008;100:144103. PubMed
McIntosh AR. Towards a network theory of cognition. Neural Networks. 2000;13:861–870. PubMed
McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell AJ, Sejnowski TJ. Analysis of fMRI data by blind separation into independent spatial components. Human Brain Mapping. 1998;6:160–188. PubMed PMC
McKiernan KA, Kaufman JN, Kucera-Thompson J, Binder JR. A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. Journal of Cognitive Neuroscience. 2003;15:394–408. PubMed
Oikonomou VP, Tzallas AT, Fotiadis DI. A Kalman filter based methodology for EEG spike enhancement. Computer Methods and Programs in Biomedicine. 2007;85:101–108. PubMed
Pyka M, Beckmann C, Schöning S, Hauke S, Heider D, Kugel H, Arolt V, Konrad C. Impact of Working Memory Load on fMRI Resting State Pattern in Subsequent Resting Phases. PLoS ONE. 2009;4:e7198. PubMed PMC
Rauch HE, Tung F, Striebel CT. Maximum likelihood estimates of linear dynamic systems. AIAA Journal. 1965;3:1445–1450.
Riera J, Watanabe J, Kazuki I, Naoki M, Aubert E, Ozaki T, Kawashima R. A state-space model of the hemodynamic approach: nonlinear filtering of BOLD signals. NeuroImage. 2004;21:547–567. PubMed
Roebroeck A, Formisano E, Goebel R. Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage. 2005;25:230–242. PubMed
Roebroeck A, Formisano E, Goebel R. The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution. Neuroimage. 2009 In Press. PubMed
Sato JR, Junior EA, Takahashi DY, de Maria Felix M, Brammer MJ, Morettin PA. A method to produce evolving functional connectivity maps during the course of an fMRI experiment using wavelet-based time-varying Granger causality. Neuroimage. 2006;31:187–196. PubMed
Sato JR, Takahashi DY, Arcuri SM, Sameshima K, Morettin PA, Baccala LA. Frequency domain connectivity identification: An application of partial directed coherence in fMRI. Human Brain Mapping. 2009;30:452–461. PubMed PMC
Schlogl A, Roberts SJ, Pfurtscheller G. A criterion for adaptive autoregressive models. In: IEEE, editor. Proceedings of the 22nd IEEE International Conference on Engineering in Medicine and Biology; 2000. pp. 1581–1582.
Schneider T, Neumaier A. Algorithm 808: ARfit— - a Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Transactions on Mathematical Software. 2001;27:58–65.
Schwarz G. Estimating the dimension of a model. The annals of statistics. 1978;6:461–464.
Seth A. A MATLAB toolbox for Granger causal connectivity analysis. Journal of Neuroscience Methods. 2009;186:262–273. PubMed
Sun FT, Miller LM, D'Esposito M. Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data. Neuroimage. 2004;21:647–658. PubMed
Vakarin VA, Krakovska OO, Borowsky R, Sarty GE. Inferring neural activity from BOLD signals through nonlinear optimization. Neuroimage. 2007;38:248–260. PubMed
Van de Ven VG, Formisano E, Prvulovic D, Roeder CH, Linden DEJ. Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Human Brain Mapping. 2004;22:165–178. PubMed PMC
Wink AM, Roerdink J. BOLD noise assumptions in fMRI. International Journal of Biomedical Imaging. 2006;2006:1–11. PubMed PMC
Zhou Z, Chen Y, Ding M, Wright P, Lu Z, Liu Y. Analyzing brain networks with PCA and conditional Granger causality. Human Brain Mapping. 2008;30:2197–2206. PubMed PMC