Cytochrome P450-mediated metabolism of N-(2-methoxyphenyl)-hydroxylamine, a human metabolite of the environmental pollutants and carcinogens o-anisidine and o-nitroanisole
Status PubMed-not-MEDLINE Jazyk angličtina Země Slovensko Médium print
Typ dokumentu časopisecké články
PubMed
21218119
PubMed Central
PMC2994023
DOI
10.2478/v10102-010-0045-8
Knihovny.cz E-zdroje
- Klíčová slova
- N-(2-methoxyphenyl)hydroxylamine, cytochrome P450, metabolism, o-anisidine, oxidation,
- Publikační typ
- časopisecké články MeSH
N-(2-methoxyphenyl)hydroxylamine is a human metabolite of the industrial and environmental pollutants and bladder carcinogens 2-methoxyaniline (o-anisidine) and 2-methoxynitrobenzene (o-nitroanisole). Here, we investigated the ability of hepatic microsomes from rat and rabbit to metabolize this reactive compound. We found that N-(2-methoxyphenyl)hydroxylamine is metabolized by microsomes of both species mainly to o-aminophenol and a parent carcinogen, o-anisidine, whereas 2-methoxynitrosobenzene (o-nitrosoanisole) is formed as a minor metabolite. Another N-(2-methoxyphenyl)hydroxylamine metabolite, the exact structure of which has not been identified as yet, was generated by hepatic microsomes of rabbits, but its formation by those of rats was negligible. To evaluate the role of rat hepatic microsomal cytochromes P450 (CYP) in N-(2-methoxyphenyl)hydroxylamine metabolism, we investigated the modulation of its metabolism by specific inducers of these enzymes. The results of this study show that rat hepatic CYPs of a 1A subfamily and, to a lesser extent those of a 2B subfamily, catalyze N-(2-methoxyphenyl)hydroxylamine conversion to form both its reductive metabolite, o-anisidine, and o-aminophenol. CYP2E1 is the most efficient enzyme catalyzing conversion of N-(2-methoxyphenyl)hydroxylamine to o-aminophenol.
Zobrazit více v PubMed
Balaban AT, Garfield RE, Lesko MJ, Seitz WA. Synthesis and spectral data of some new N-nitroso-N-phenylhydroxylamine (cupferron) derivatives. Org Prep Proced Int. 1998;30:439–446.
Beland FA, Fullerton NF, Heflich RH. Rapid isolation, hydrolysis and chromatography of formaldehyde-modified DNA. J Chromatogr. 1984;308:121–131. PubMed
Branner B, Kutzer C, Zwickenpflug W, Scherer G, Heller W-D, Richter E. Haemoglobin adducts from aromatic amines and tobacco-specific nitrosamines in pregnant smoking and non-smoking women. Biomarkers. 1998;3:35–47. PubMed
Brennan RJ, Schiestl RH. Aniline and its metabolite generate free radicals in yeast. Mutagenesis. 1997;12:215–220. PubMed
Brennan RJ, Schiestl RH. The aromatic amine carcinogens o-toluidine and o-anisidine induce free radicals and intrachromosomal recombination in Saccharomyces cerevisiae . Mutat Res. 1999;430:37–45. PubMed
Cheng G, Shi Y, Sturla S, Jalas J, McIntee EJ, Villalta PW, Wang M, Hecht SS. Reactions of formaldehyde plus acetaldehyde with deoxyguanosine and DNA: Formation of cyclic deoxyguanosine adducts and formaldehyde cross-links. Chem Res Toxicol. 2003;16:145–152. PubMed
Dhareshwar SS, Stella VJ. Your prodrug releases formaldehyde: Should you be concerned? No! J Pharm Sci. 2008;97:4184–4193. PubMed
Falter B, Kutzer C, Richter E. Biomonitoring of hemoglobin adducts: aromatic amines and tobacco-specific nitrosamines. Clin Investig. 1994;72:364–371. PubMed
Garner RC, Martin CN, Clayson DB. Carcinogenic aromatic amines and related compounds. In: Searle C, editor. Chemical Carcinogens, ACS Monograph 182. 2nd ed. Vol. 1. Washington, DC: American Chemical Society; 1984. pp. 175–302.
Hauthal HG. Rosenmontag und die Folgen die Störfälle der Hoechst AG. Nach. Chem Tech Lab. 1993;41:440.
Hodek P, Jansčák P, Anzenbacher P, Burkhard J, Janků J, Vodička L. Metabolism of diamantane by rat-liver microsomal-cytochromes P-450. Xenobiotica. 1988;18:1109–1118. PubMed
Huang H, Hopkins PB. DNA interstrand cross-linking by formaldehyde: nucleotide sequence preference and covalent structure of the predominant cross-link formed in synthetic oligonucleotides. J Am Chem Soc. 1993;115:9402–9408.
Imaoka S, Osada M, Minamiyama Y, Yukimura T, Toyokuni S, Takemura S, Hiroi T, Funae Y. Role of phenobarbital-inducible cytochrome P450s as a source of active oxygen species in DNA-oxidation. Cancer Lett. 2004;203:117–125. PubMed
IARC. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, No. 27. Lyon: IARC; 1982. Ortho- and para-anisidine and their hydrochlorides. PubMed
IARC. IARC Monographs on the Evaluation of Carcinogenic Risk to Humans. Vol. 88. Lyon: IARC; 2006. Formaldehyde, 2-butoxyethanol and 1-terc-butoxypropan-2-ol; pp. 39–325. PubMed PMC
Kim D, Kadlubar FF, Teitel CH, Guengerich FP. Formation and reduction of aryl and heterocyclic nitroso compounds and significance in the flux of hydroxylamines. Chem Res Toxicol. 2004;17:529–536. PubMed
Kirchner G, Bayer U. Genotoxic activity of the aminophenols as evidenced by the induction of sister chromatid exchanges. Hum Toxicol. 1992;1:387–392. PubMed
Mikšanová M, Novák P, Frei E, Stiborová M. Metabolism of carcinogenic 2-nitroanisole by rat, rabbit, porcine and human hepatic cytosol. Collect Czech Chem Commun. 2004;69:589–602.
Naiman K, Dračínská H, Martínková M, Šulc M, Dračínský M, Kejíková L, Hodek P, Hudeček J, Liberda J, Schmeiser HH, Frei E, Stiborová M. Redox cycling in the metabolism of the environmental pollutant and suspected human carcinogen o-anisidine by rat and rabbit hepatic microsomes. Chem Res Toxicol. 2008;21:1610–1621. PubMed
NTP. NTP Technical Report 89. Bethesda, MD: National Institute of Health, US Department of Health and Human Services; 1978. Bioassay of o-anisidine hydrochloride for possible carcinogenicity.
NTP. NTP Technical Report 416. Bethesda, MD: National Institute of Health, US Department of Health and Human Services; 1993. Toxicology and Carcinogenesis. Studies of 2-nitroanisole.
Okhuma Y, Kawanishi S. Oxidative DNA damage induced by a metabolite of carcinogenic o-anisidine: enhancement of DNA damage and alteration in its sequence specificity by superoxide dismutase. Arch Biochem Biophys. 2001;389:49–56. PubMed
Omura T, Sato R. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem. 1964;239:2370–2378. PubMed
Richter E, Rosler S, Scherer G, Gostomzyk JG, Grubl A, Kamer U, Behrendt H. Haemoglobin adducts from aromatic amines in children in relation to area of residence and exposure to environmental tobacco smoke. Int Arch Occup Environ Health. 2001;74:421–428. PubMed
Rýdlová H, Mikšanová M, Ryšlavá H, Stiborová M. Carcinogenic pollutants o-nitroanisole and o-anisidine are substrates and inducers of cytochromes P450. Biomed Papers. 2005;49:441–447. PubMed
Sasaki YF, Nishidate E, Su YQ, Matsusaka N, Tsuda S, Susa N, Furukawa Y, Ueno S. Organ-specific genotoxicity of the potent rodent bladder carcinogens o-anisidine and p-cresidine. Mutat Res. 1998;412:155–160. PubMed
Seidenfaden W. Methoden der Organischen Chemie (Houben-Weyl), Band X/1. Stuttgart: Georg Thieme Verlag; p. 1058.
Sottocasa GL, Kuylenstierna I, Ernster I, Bergstrand A. An electron transport system associated with the outer membrane of liver mitochondria. J Cell Biol. 1967;32:415–438. PubMed PMC
Stabbert R, Schäfer K-H, Biefel C, Rustemeier K. Analysis of aromatic amines in cigarette smoke. Rapid Commun Mass Spectrom. 2003;17:2125–2132. PubMed
Stiborová M, Asfaw B, Anzenbacher P, Lešetický L, Hodek P. The first identification of the benzenediazonium ion formation from a non-aminoazo dye, 1-phenylazo-2-hydroxynaphthalene (Sudan I) by microsomes of rat livers. Cancer Lett. 1988;40:319–326. PubMed
Stiborová M, Asfaw B, Frei E, Schmeiser HH, Wiessler M. Benzenediazonium ion derived from Sudan I forms an 8-(phenylazo)guanine adduct. Chem Res Toxicol. 1995;8:489–498. PubMed
Stiborová M, Mikšanová M, Havlíček V, Schmeiser HH, Frei E. Mechanism of peroxidase-mediated oxidation of carcinogenic o-anisidine and its binding to DNA. Mutat Res. 2002;500:49–66. PubMed
Stiborová M, Mikšanová M, Smrček S, Bieler CA, Breuer A, Klokow KA, Schmeiser HH, Frei E. Identification of a genotoxic mechanism for 2-nitroanisole carcinogenicity and of its carcinogenic potential for humans. Carcinogenesis. 2004;25:833–840. PubMed
Stiborová M, Mikšanová M, Šulc M, Rýdlová H, Schmeiser HH, Frei E. Identification of a genotoxic mechanism for the carcinogenicity of the environmental pollutant and suspected human carcinogen o-anisidine. Int J Cancer. 2005;116:667–678. PubMed
Stiborová M, Schmeiser HH, Breuer A, Frei E. Evidence for activation of carcinogenic o-anisidine by prostaglandin H synthase: 32P-postlabelling analysis of DNA adducts formation. Gen Physiol Biophys. 2001;20:267–279. PubMed
Stiborová M, Schmeiser HH, Frei E. To the mechanism of 2-nitroanisole carcinogenicity: in vitro metabolism of 2-nitroanisole mediated by peroxidases and xanthine oxidase. Collect Czech Chem Commun. 1998;63:857–869.
Traupe H, Menge G, Kandt J, Karmaus W. Higher frequency of atopic dermatitis and decrease in viral warts among children exposed to chemicals liberated in a chemical accident in Frankfurt, Germany. Dermatology. 1997;195:112–118. PubMed
U.S. Department of Health and Human Services. 11th Report on Carcinogens. Washington, DC: U.S. Government Printing Office; 2004.
Weiss T, Angerer J. Simultaneous determination of various aromatic amines and metabolites of aromatic nitro compounds in urine for low level exposure using gas chromatography-mass spectrometry. J Chromatogr B. 2003;778:179–192. PubMed
Wiechelman KJ, Braun RD, Fitzpatrick JD. Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation. Anal Biochem. 1988;175:231–237. PubMed
Yang CS, Tu YY, Koop DR, Coon MJ. Metabolism of nitrosamines by purified rabbit liver cytochrome P-450 isozymes. Cancer Re. 1985;45:1140–1145. PubMed