Role of intestinal bacteria in gliadin-induced changes in intestinal mucosa: study in germ-free rats
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21249146
PubMed Central
PMC3020961
DOI
10.1371/journal.pone.0016169
Knihovny.cz E-zdroje
- MeSH
- Bacteria patogenita MeSH
- bakteriální toxiny farmakologie MeSH
- Bifidobacterium patogenita MeSH
- celiakie etiologie MeSH
- cytokiny biosyntéza MeSH
- Enterobacteriaceae patogenita MeSH
- gliadin farmakokinetika farmakologie MeSH
- gnotobiologické modely MeSH
- interakce hostitele a patogenu účinky léků MeSH
- interferon gama farmakologie MeSH
- krysa rodu Rattus MeSH
- permeabilita MeSH
- pohárkové buňky patologie MeSH
- střeva mikrobiologie patologie MeSH
- střevní sliznice účinky léků metabolismus mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální toxiny MeSH
- cytokiny MeSH
- gliadin MeSH
- interferon gama MeSH
BACKGROUND AND AIMS: Celiac disease (CD) is a chronic inflammatory disorder of the small intestine that is induced by dietary wheat gluten proteins (gliadins) in genetically predisposed individuals. The overgrowth of potentially pathogenic bacteria and infections has been suggested to contribute to CD pathogenesis. We aimed to study the effects of gliadin and various intestinal bacterial strains on mucosal barrier integrity, gliadin translocation, and cytokine production. METHODOLOGY/PRINCIPAL FINDINGS: Changes in gut mucosa were assessed in the intestinal loops of inbred Wistar-AVN rats that were reared under germ-free conditions in the presence of various intestinal bacteria (enterobacteria and bifidobacteria isolated from CD patients and healthy children, respectively) and CD-triggering agents (gliadin and IFN-γ) by histology, scanning electron microscopy, immunofluorescence, and a rat cytokine antibody array. Adhesion of the bacterial strains to the IEC-6 rat cell line was evaluated in vitro. Gliadin fragments alone or together with the proinflammatory cytokine interferon (IFN)-γ significantly decreased the number of goblet cells in the small intestine; this effect was more pronounced in the presence of Escherichia coli CBL2 and Shigella CBD8. Shigella CBD8 and IFN-γ induced the highest mucin secretion and greatest impairment in tight junctions and, consequently, translocation of gliadin fragments into the lamina propria. Shigella CBD8 and E. coli CBL2 strongly adhered to IEC-6 epithelial cells. The number of goblet cells in small intestine increased by the simultaneous incubation of Bifidobacterium bifidum IATA-ES2 with gliadin, IFN-γ and enterobacteria. B. bifidum IATA-ES2 also enhanced the production of chemotactic factors and inhibitors of metalloproteinases, which can contribute to gut mucosal protection. CONCLUSIONS: Our results suggest that the composition of the intestinal microbiota affects the permeability of the intestinal mucosa and, consequently, could be involved in the early stages of CD pathogenesis.
Zobrazit více v PubMed
Schuppan D, Junker Y, Barisani D. Celiac disease: from pathogenesis to novel therapies. Gastroenterology. 2009;137:1912–1933. PubMed
Sollid LM, Markussen G, Ek J, Gjerde H, Vartdal F, et al. Evidence for a primary association of celiac disease to a particular HLA-DQ alpha/beta heterodimer. J Exp Med. 1989;169:345–350. PubMed PMC
Meresse B, Verdier J, Cerf-Bensussan N. The cytokine interleukin 21: a new player in coeliac disease? Gut. 2008;57:879–881. PubMed
Fina D, Sarra M, Caruso R, Del Vecchio Blanco G, Pallone F, et al. Interleukin 21 contributes to the mucosal T helper cell type 1 response in coeliac disease. Gut. 2008;57:887–892. PubMed
van Heel DA, Franke L, Hunt KA, Gwilliam R, Zhernakova A, et al. A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. Nat Genet. 2007;39:827–829. PubMed PMC
Forsberg G, Fahlgren A, Hörstedt P, Hammarström S, Hernell O, et al. Presence of bacteria and innate immunity of intestinal epithelium in childhood celiac disease. Am J Gastroenterol. 2004;99:894–904. PubMed
Nadal I, Donat E, Ribes-Koninckx, Calabuig M, Sanz Y. Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J Med Microbiol. 2007;56:1669–1674. PubMed
Collado MC, Calabuig M, Sanz Y. Differences between the fecal microbiota of coeliac infants and healthy controls. Curr Issues Intest Microbiol. 2007;8:9–14. PubMed
Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Imbalances in faecal and duodenal Bifidobacterium species composition in active and non-active coeliac disease. BMC Microbiol. 2008;8:232–241. PubMed PMC
Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. J Clin Pathol. 2009;62:264–269. PubMed
Shan L, Marti T, Sollid LM, Gray GM, Khosla C. Comparative biochemical analysis of three bacterial prolyl endopeptidases: implications for coeliac sprue. Biochem J. 2004;383:311–318. PubMed PMC
Dieterich W, Ehnis T, Bauer M, Donner P, Volta U, et al. Identification of tissue transglutmainase as the autoantigen of celiac disease. Nat Med. 1997;3:797–801. PubMed
Dubois PC, van Heel DA. Translational mini-review series on the immunogenetics of gut disease: immunogenetics of coeliac disease. Clin Exp Immunol. 2008;153:162–173. PubMed PMC
Vader LW, Stepniak DT, Bunnik EM, Kooy YM, de Haan W, et al. Characterization of cereal toxicity for celiac disease patients based on protein homology in grains. Gastroenterology. 2003;125:1105–1113. PubMed
Stepniak D, Koning F. Celiac disease–sandwiched between innate and adaptive immunity. Hum Immunol. 2006;67:460–468. PubMed
Palova-Jelinkova L, Rozkova D, Pecharova B, Bartova J, Sediva A, et al. Gliadin fragments induce phenotypic and functional maturation of human dendritic cells. J Immunol. 2005;175:7038–7045. PubMed
Sartor RB. Cytokines in intestinal inflammation: pathophysiological and clinical considerations. Gastroenterology. 1994;106:533–539. PubMed
Tlaskalova-Hogenova H, Tuckova L, Lodinova-Zadnikova R, Stepankova R, Cukrowska B, et al. Mucosal immunity: its role in defense and allergy. Int Arch Allergy Immunol. 2002;128:77–89. PubMed
Dharmani P, Srivastava V, Kissoon-Singh V, Chadee K. Role of intestinal mucins in innate host defense mechanisms against pathogens. J Innate Immun. 2009;1:123–135. PubMed PMC
Tripathi A, Lammers KM, Goldblum S, Shea-Donohue T, Nethel-Arnett S, et al. Identificataion of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. Proc Natl Acad Sci USA. 2009;39:16799–19804. PubMed PMC
Sander GR, Cummins AG, Henshall T, Powell BC. Rapid disruption of intestinal barrier function by gliadin involves altered expression of apical junctional proteins FEBS lett. 2005;579:4851–4855. PubMed
Drago S, El Asmar R, Di Pierro M, Grazia Clemente M, Tripathi A, et al. Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal lines. Scand J Gastroenterol. 2006;41:408–419. PubMed
Visser J, Rozing J, Sapone A, Lammers K, Fasano A. Tight junctions, intestinal permeability, and autoimmunity. Ann NY Acad Sci. 2009;1165:195–205. PubMed PMC
Sepp E, Julge K, Vasar M, Naaber P, Björksten B, et al. Intestinal microflora of Estonian and Swedish infants. Acta Paediatr. 1997;86:956–961. PubMed
Kopecny J, Mrazek J, Fliegerova K, Frühauf P, Tuckova L. The intestinal microflora of childhood patients with indicated celiac disease. Folia Microbiol. 2008;53:214–216. PubMed
Sanchez E, Nadal I, Donat E, Ribes-Koninckx C, Calabuig M, et al. Reduced diversity and increased virulence-gene carriage in intestinal enterobacteria of coeliac children. BMC Gastroenterol. 2008;8:50–57. PubMed PMC
Tuckova L, Flegelova Z, Tlaskalova-Hogenova H, Zidek Z. Activation of macrophages by food antigens: enhancing effect of gluten on nitric oxide and cytokine production. J Leukoc Biol. 2000;67:312–318. PubMed
Cinova J, Palova-Jelinkova L, Smythies LE, Cerna M, Pecharova B, et al. Gliadin peptides activate blood monocytes from patients with celiac disease. J Clin Immunol. 2007;27:201–209. PubMed
Izquierdo E, Medina M, Ennahar S, Marchioni E, Sanz Y. Resistance to simulated gastrointestinal conditions and adhesion to mucus as probiotic criteria for Bifidobacterium longum strains. Curr Microbiol. 2008;56:613–618. PubMed
Medina M, Izquierdo E, Ennahar S, Sanz Y. Differential immunomodulatory properties of Bifidobacterium logum strains: relevance to probiotic selection and clinical applications. Clin Exp Immunol. 2007;150:531–538. PubMed PMC
Stepankova R. Rearing germfree rats and rabbits. Folia Microbiol. 1979;24:11–15. PubMed
Stepankova R, Tlaskalova-Hogenova H, Sinkora J, Jodl J, Fric P. Changes in jejunal mucosa after long-term feeding of germfree rats with gluten. Scand J Gastroenterol. 1996;31:551–557. PubMed
Kverka M, Burianova J, Lodinova-Zadnikova R, Kocourkova I, Cinova J, et al. Cytokine profiling in human colostrum and milk by protein array. Clinical Chemistry. 2007;53:955–962. PubMed
Marsh MN. Gluten, major histocompatibility complex, and the small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity (‘celiac sprue’). Gastroenterology. 1992;102:330–354. PubMed
Kandori H, Hirayama K, Takeda M, Doi K. Histochemical, lectin-histochemical and morphometrical characteristics of intestinal goblet cells of germfree and conventional mice. Exp Anim. 1996;45:155–160. PubMed
Enss ML, Grosse-Siestrup H, Schmidt-Wittig U, Gartner K. Changes in colonic mucins of germfree rats in response to the introduction of a “normal” rat microbial flora. Rat colonic mucin. J Exp Anim Sci. 1992;35:110–119. PubMed
Sharma R, Schumacher U. Morphometric analysis of intestinal mucins under different dietary conditions and gut flora in rats. Dig Dis Sci. 1995;35:110–119. PubMed
Enss ML, Muller H, Schmidt-Wittig U, Kownatzki R, Coenen M, et al. Effects of perorally applied endotoxin on colonic mucins of germfree rats. Scand J Gastroenterol. 1996;31:868–874. PubMed
Deplancke B, Gaskins HR. Microbioal modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr. 2001;73:1131–1141. PubMed
Bry L, Falk PG, Midtvedt T, Gordon JI. A model of host-microbial interaction in an open mammalian ecosystem. Science. 1996;273:1380–1383. PubMed
Peterson DA, McNulty NP, Guruge JL, Gordon JI. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe. 2007;15:328–339. PubMed
Sharma R, Schumacher U, Ronaasen V, Coates M. Rat intestinal mucosal responses to a microbial flora and different diets. Gut. 1995;36:209–214. PubMed PMC
Barcelo A, Claustre J, Moro F, Chayvialle JA, Cuber JC, et al. Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon. Gut. 2000;46:218–224. PubMed PMC
Crabtree JE, Heatley RV, Losowsky MS. Glycoprotein synthesis and secretion by cultured small intestinal mucosa in coeliac disease. Gut. 1989;30:1339–1343. PubMed PMC
Barresi G, Tuccari G, Tedeschi A, Magazzu G. Lectin binding sites in duodeno-jejunal mucosae from coeliac children. Histochemistry. 1988;88:105–112. PubMed
Lindfors K, Blomqvist T, Juuti-Uusitalo K, Stenman S, Venäläinen J, et al. Live probiotic Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture. Clin Exp Immunol. 2008;152:552–558. PubMed PMC
Maiuri L, Ciacci C, Ricciardelli I, Vacca L, Raia V, et al. Unexpected role of surface transglutaminase type II in celiac disease. Gastroenterology. 2005;129:1400–1413. PubMed
Beauchesne E, Desjardins P, Hazell AS, Butterworth RF. Altered expression of tight junction proteins and matrix metalloproteinases in thiamine-deficient mouse brain. Neurochem Int. 2009;55:275–281. PubMed
Ciccocioppo R, Finamore A, Ara C, Di Sabatino A, Mengheri E, et al. Altered expression, localization, and phosphorylation of epithelial junctional proteins in celiac disease. Am J Clin Pathol. 2006;125:502–511. PubMed
Ukena SN, Singh A, Dringenberg U, Engelhardt R, Seidler U, et al. Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS One. 2007;12:2:e1308. PubMed PMC
Daum S, Bauer U, Foss HD, Schuppan D, Stein H, et al. Increased expression of mRNA for matrix metalloproteinases-1 and -3 and tissue inhibitor of metalloproteinases-1 in intestinal biopsy specimens from patients with coeliac disease. Gut. 1999;44:17–25. PubMed PMC
Salmela MT, MacDonald TT, Black D, Irvine B, Zhuma T, et al. Upregulation of matrix metalloproteinases in a model of T cell mediated tissue injury in the gut: analysis by gene array and in situ hybridisation. Gut. 2002;51:540–547. PubMed PMC
Zebrowska A, Narbutt J, Sysa-Jedrzejowska A, Kobos J, Waszczykowska E. The imbalance between metalloproteinases and their tissue inhibitors is involved in the pathogenesis of dermatitis herpetiformis. Mediators Inflamm. 2005;14:373–379. PubMed PMC
De Palma G, Cinova J, Stepankova R, Tuckova L, Sanz Y. Pivotal advance: Bifidobacteria and gram-negative bacteria differentially influence immune responses in the proinflammatory milieu of celiac disease. J Leukoc Biol. 2010;87:765–778. PubMed
Finlay BB, Falkow S. Common themes in microbial pathogenicity revised. Microbiol Mol Biol Rev. 1997;61:136–169. PubMed PMC
Wilson M, McNab R, Henderson B. Vol. 656. Cambridge Univ Press; 2002. Bacterial Disease Mechanisms. 1st edn.
Diet Matters: Endotoxin in the Diet Impacts the Level of Allergic Sensitization in Germ-Free Mice