Biodegradable star HPMA polymer conjugates of doxorubicin for passive tumor targeting
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21392579
DOI
10.1016/j.ejps.2011.03.001
PII: S0928-0987(11)00063-7
Knihovny.cz E-zdroje
- MeSH
- biokompatibilní materiály chemická syntéza chemie MeSH
- dendrimery chemie MeSH
- doxorubicin aplikace a dávkování chemie MeSH
- methakryláty chemie MeSH
- molekulární struktura MeSH
- nosiče léků chemická syntéza chemie MeSH
- protinádorová antibiotika aplikace a dávkování chemie MeSH
- rozpustnost MeSH
- stabilita léku MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biokompatibilní materiály MeSH
- dendrimery MeSH
- doxorubicin MeSH
- hydroxypropyl methacrylate MeSH Prohlížeč
- methakryláty MeSH
- nosiče léků MeSH
- PAMAM Starburst MeSH Prohlížeč
- protinádorová antibiotika MeSH
New biodegradable star polymer-doxorubicin (Dox) conjugates designed for passive tumor targeting were investigated and the present study described their synthesis, physico-chemical characterization, drug release and biodegradation. In the conjugates the core formed by poly(amido amine) (PAMAM) dendrimers was grafted with semitelechelic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers bearing doxorubicin attached by hydrazone bonds, which enabled intracellular pH-controlled drug release, or by a GFLG sequence, which was susceptible to enzymatic degradation. The controlled synthesis utilizing semitelechelic copolymer precursors facilitated preparation of biodegradable polymer conjugates in a broad range of molecular weights (110-295 kDa) while still maintaining low polydispersity (∼1.7). The polymer grafts were attached to the dendrimers either through stable amide bonds or enzymatically or reductively degradable spacers, which enabled intracellular degradation of the high molecular weight polymer carrier to products that were able to be excreted from the body by glomerular filtration. Biodegradability tests showed that the rate of degradation was much faster for reductively degradable conjugates (completed within 4 h) than the degradation of conjugates linked via an enzymatically degradable oligopeptide GFLG sequence (within 72 h). This finding was likely due to the difference in steric hindrance for the small molecule glutathione and the enzyme cathepsin B. As for drug release, the conjugates were fairly stable in buffer at pH 7.4 (model of blood stream) but released doxorubicin either under mild acidic conditions or in the presence of lysosomal enzyme cathepsin B, both of which modeled the tumor cell microenvironment.
Citace poskytuje Crossref.org
HPMA Copolymer-Based Nanomedicines in Controlled Drug Delivery