Role of optimization criterion in static asymmetric analysis of lumbar spine load

. 2011 Oct ; 161 (19-20) : 477-85. [epub] 20110729

Jazyk angličtina Země Rakousko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21792528

A common method for load estimation in biomechanics is the inverse dynamics optimization, where the muscle activation pattern is found by minimizing or maximizing the optimization criterion. It has been shown that various optimization criteria predict remarkably similar muscle activation pattern and intra-articular contact forces during leg motion. The aim of this paper is to study the effect of the choice of optimization criterion on L4/L5 loading during static asymmetric loading. Upright standing with weight in one stretched arm was taken as a representative position. Musculoskeletal model of lumbar spine model was created from CT images of Visible Human Project. Several criteria were tested based on the minimization of muscle forces, muscle stresses, and spinal load. All criteria provide the same level of lumbar spine loading (difference is below 25%), except the criterion of minimum lumbar shear force which predicts unrealistically high spinal load and should not be considered further. Estimated spinal load and predicted muscle force activation pattern are in accordance with the intradiscal pressure measurements and EMG measurements. The L4/L5 spine loads 1312 N, 1674 N, and 1993 N were predicted for mass of weight in hand 2, 5, and 8 kg, respectively using criterion of mininum muscle stress cubed. As the optimization criteria do not considerably affect the spinal load, their choice is not critical in further clinical or ergonomic studies and computationally simpler criterion can be used.

Zobrazit více v PubMed

J Biomech. 1988;21(1):59-66 PubMed

J Biomech. 2001 Feb;34(2):153-61 PubMed

J Bone Joint Surg Am. 1982 Jun;64(5):713-20 PubMed

J Biomech. 1997 Sep;30(9):959-65 PubMed

J Biomech. 2001 Jul;34(7):883-93 PubMed

J Biomech. 2003 Jun;36(6):765-76 PubMed

IEEE Trans Rehabil Eng. 2000 Sep;8(3):362-70 PubMed

J Biomech. 2003 Apr;36(4):513-23 PubMed

J Biomech. 1999 Mar;32(3):311-6 PubMed

Clin Biomech (Bristol, Avon). 2008 Feb;23(2):147-58 PubMed

IEEE Trans Neural Syst Rehabil Eng. 2007 Jun;15(2):252-7 PubMed

Exp Brain Res. 1994;98(2):336-41 PubMed

Comput Methods Biomech Biomed Engin. 2005 Feb;8(1):25-9 PubMed

J Biomech. 1981;14(11):793-801 PubMed

J Biomech. 1978;11(1-2):75-85 PubMed

J Electromyogr Kinesiol. 2009 Oct;19(5):737-45 PubMed

J Biomech. 1999 Jan;32(1):13-7 PubMed

J Biomech. 2002 Aug;35(8):1123-35 PubMed

J Biomech. 2001 Oct;34(10):1243-55 PubMed

Radiat Environ Biophys. 2004 Feb;42(4):229-35 PubMed

Crit Rev Biomed Eng. 1997;25(4-5):371-407 PubMed

Spine (Phila Pa 1976). 1999 Apr 15;24(8):755-62 PubMed

J Biomech. 1995 Mar;28(3):251-67 PubMed

J Biomech. 2001 Mar;34(3):409-15 PubMed

J Biomech. 2001 Jun;34(6):733-40 PubMed

J Biomech. 2000 Feb;33(2):225-9 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Biomechanical analysis of INFINITY rehabilitation method for treatment of low back pain

. 2017 May ; 29 (5) : 832-838. [epub] 20170516

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...