Neonatal onset of mitochondrial disorders in 129 patients: clinical and laboratory characteristics and a new approach to diagnosis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- hyperamonemie diagnóza genetika MeSH
- kardiomyopatie diagnóza genetika MeSH
- Leighova nemoc krev diagnóza genetika MeSH
- lidé MeSH
- mitochondriální nemoci krev diagnóza genetika MeSH
- mutace MeSH
- novorozenec nedonošený MeSH
- novorozenec MeSH
- retrospektivní studie MeSH
- růstová retardace plodu krev diagnóza genetika MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
INTRODUCTION: Mitochondrial disorders (MD) may manifest in neonates, but early diagnosis is difficult. In this study, clinical and laboratory data were analyzed in 129 patients with neonatal onset of MD to identify any association between specific mitochondrial diseases and their symptoms with the aim of optimizing diagnosis. MATERIALS AND METHODS: Retrospective clinical and laboratory data were evaluated in 461 patients (331 families) with confirmed MD. RESULTS: The neonatal onset of MD was reported in 28% of the patients. Prematurity, intrauterine growth retardation and hypotonia necessitating ventilatory support were present in one-third, cardiomyopathy in 40%, neonatal seizures in 16%, Leigh syndrome in 15%, and elevated lactate level in 87%. Hyperammonemia was observed in 22 out of 52 neonates. Complex I deficiency was identified in 15, complex III in one, complex IV in 23, complex V in 31, combined deficiency of several complexes in 53, and PDH complex deficiency was identified in six patients. Molecular diagnosis was confirmed in 49 cases, including a newborn with a 9134A>G mutation in the MTATP6 gene, which has not been described previously. CONCLUSION: The most significant finding is the high incidence of neonatal cardiomyopathy and hyperammonemia. Based on our experience, we propose a diagnostic flowchart applicable to critically ill neonates suspicious for MD. This tool will allow for the use of direct molecular genetic analyses without the need for muscle biopsies in neonates with Alpers, Barth, MILS and Pearson syndromes, SCO1, SCO2, TMEM70, ATP5E, SUCLG1 gene mutations and PDH complex deficiency.
Zobrazit více v PubMed
Eur J Pediatr. 2009 Mar;168(3):311-5 PubMed
Mol Genet Metab. 2010 Jun;100(2):111-7 PubMed
Biochem Biophys Res Commun. 2005 Aug 26;334(2):582-7 PubMed
Pediatr Dev Pathol. 2004 Nov-Dec;7(6):620-4 PubMed
Anal Biochem. 1991 Dec;199(2):223-31 PubMed
Mitochondrion. 2011 Jan;11(1):191-9 PubMed
Brain. 2006 Jul;129(Pt 7):1685-92 PubMed
Pediatrics. 2005 Nov;116(5):1170-7 PubMed
Hum Mol Genet. 2003 Oct 15;12(20):2693-702 PubMed
Pediatrics. 2006 Nov;118(5):2076-83 PubMed
Mol Genet Metab. 2010 Oct-Nov;101(2-3):282-5 PubMed
Clin Chem. 2006 May;52(5):860-71 PubMed
Clin Pediatr (Phila). 2003 Oct;42(8):703-10 PubMed
Am J Hum Genet. 2000 Nov;67(5):1104-9 PubMed
Pediatrics. 2008 Nov;122(5):1003-8 PubMed
Neurology. 2002 Nov 12;59(9):1406-11 PubMed
Eur J Biochem. 1995 May 15;230(1):235-41 PubMed
Neurology. 1997 Dec;49(6):1655-61 PubMed
Pediatr Radiol. 2008 May;38(5):559-62 PubMed
Am J Med Genet A. 2008 Nov 1;146A(21):2822-7 PubMed
Eur J Pediatr. 2008 Aug;167(8):941-4 PubMed
Acta Paediatr. 2007 Mar;96(3):450-1 PubMed
Am J Hum Genet. 2003 Jan;72(1):101-14 PubMed
Endocr Metab Immune Disord Drug Targets. 2010 Sep;10(3):214-23 PubMed
Cas Lek Cesk. 2002 Oct 11;141(20):636-41 PubMed
Hum Mol Genet. 2010 Sep 1;19(17):3430-9 PubMed
Pediatrics. 2007 Apr;119(4):722-33 PubMed
J Med Genet. 2010 Oct;47(10):670-6 PubMed
Pediatrics. 2004 Oct;114(4):925-31 PubMed
Neurology. 2002 Nov 12;59(9):1402-5 PubMed
Mitochondrion. 2009 Sep;9(5):346-52 PubMed
Am J Med Genet. 2001 Spring;106(1):4-17 PubMed
J Inherit Metab Dis. 2011 Apr;34(2):277-82 PubMed
Neuropediatrics. 2006 Jun;37(3):137-41 PubMed
Eur J Hum Genet. 2010 Mar;18(3):324-9 PubMed
Am J Med Genet A. 2004 May 1;126A(4):349-54 PubMed
Eur J Paediatr Neurol. 2011 Mar;15(2):101-8 PubMed
Arch Dis Child. 2010 Apr;95(4):296-301 PubMed
Clin Chim Acta. 1994 Jul;228(1):35-51 PubMed
Am J Hum Genet. 2009 Jun;84(6):718-27 PubMed
Am J Hum Genet. 2007 Aug;81(2):383-7 PubMed
Early Hum Dev. 2008 Apr;84(4):269-76 PubMed
Anal Biochem. 1991 Nov 1;198(2):347-51 PubMed
Neuropediatrics. 2008 Feb;39(1):24-8 PubMed
Ann Clin Biochem. 1992 Nov;29 ( Pt 6):638-45 PubMed
Anal Biochem. 1995 Oct 10;231(1):218-24 PubMed
J Inherit Metab Dis. 2009 Apr;32(2):143-58 PubMed
Neurology. 2006 Nov 28;67(10):1823-6 PubMed
Pediatr Res. 2004 Jun;55(6):988-94 PubMed
Acta Paediatr. 2004 Oct;93(10):1312-7 PubMed
Am J Physiol Cell Physiol. 2009 May;296(5):C1218-26 PubMed
J Med Genet. 2011 Mar;48(3):177-82 PubMed
Lancet Neurol. 2011 Sep;10(9):806-18 PubMed
Dev Med Child Neurol. 2010 Feb;52(2):e1-9 PubMed
Cas Lek Cesk. 2002 Aug 30;141(17):551-4 PubMed
Mitochondrion. 2010 Jun;10(4):321-9 PubMed
Semin Fetal Neonatal Med. 2011 Aug;16(4):216-21 PubMed
J Inherit Metab Dis. 2006 Oct;29(5):684 PubMed
Pediatr Res. 2006 Jan;59(1):21-6 PubMed
J Pediatr. 2003 Aug;143(2):208-12 PubMed
Mol Cell Biochem. 1999 Aug;198(1-2):113-8 PubMed
Med Sci Monit. 2001 Nov-Dec;7(6):1319-25 PubMed
AJNR Am J Neuroradiol. 2003 Aug;24(7):1471-4 PubMed
Variability of Clinical Phenotypes Caused by Isolated Defects of Mitochondrial ATP Synthase
Revisiting mitochondrial diagnostic criteria in the new era of genomics
TMEM70 deficiency: long-term outcome of 48 patients