Intraperitoneal IL-6 signaling in incident patients treated with icodextrin and glucose bicarbonate/lactate-based peritoneal dialysis solutions
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
22302924
PubMed Central
PMC3525374
DOI
10.3747/pdi.2010.00235
PII: 32/1/37
Knihovny.cz E-zdroje
- MeSH
- časové faktory MeSH
- dialyzační roztoky farmakologie MeSH
- dospělí MeSH
- ELISA MeSH
- fixní kombinace léků MeSH
- glukany farmakologie MeSH
- glukosa farmakologie MeSH
- hydrogenuhličitany farmakologie MeSH
- icodextrin MeSH
- interleukin-6 metabolismus MeSH
- kontinuální ambulantní peritoneální dialýza metody MeSH
- kyselina mléčná farmakologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- následné studie MeSH
- peritoneum účinky léků metabolismus patologie MeSH
- prospektivní studie MeSH
- průtoková cytometrie MeSH
- senioři MeSH
- signální transdukce MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- dialyzační roztoky MeSH
- fixní kombinace léků MeSH
- glukany MeSH
- glukosa MeSH
- hydrogenuhličitany MeSH
- icodextrin MeSH
- interleukin-6 MeSH
- kyselina mléčná MeSH
OBJECTIVE: In this study, we compared the activity of interleukin-6 (IL-6), a marker of ongoing peritoneal inflammation and biocompatibility, and its other signaling components, the soluble IL-6 receptor (sIL-6R) and soluble Gp130 (sGp130), in peritoneal effluent from patients treated with icodextrin-based (E) peritoneal dialysis (PD) solution and glucose-based bicarbonate/lactate-buffered (P) solution. METHODS: Using baseline peritoneal ultrafiltration capacity, 33 stable incident PD patients were allocated either to P only (n = 20) or to P plus E for the overnight dwell (n = 13). We used ELISA to determine IL-6, sIL-6R, and sGp130 in timed overnight effluent at 1, 6, and 12 months after PD initiation. Flow cytometry was used to measure expression of IL-6R and Gp130 on isolated peritoneal leukocytes at the same time points. Peritonitis was an exclusion criterion. RESULTS: At all time points, levels of IL-6 and sIL-6R, and the appearance rates of IL-6 (90.5 pg/min vs. 481.1 pg/min, p < 0.001; 138.6 pg/min vs. 1187.5 pg/min, p < 0.001; and 56.1 pg/min vs. 1386.0 pg/min, p < 0.001), sIL-6R (2035.3 pg/min vs. 4907.0 pg/min, p < 0.01; 1375.0 pg/min vs. 6348.4 pg/min, p < 0.01; and 1881.3 pg/min vs. 5437.8 pg/min, p < 0.01), and sGp130 (37.6 ng/min vs. 65.4 ng/min, p < 0.01; 39.2 ng/min vs. 80.6 ng/min, p < 0.01; 27.8 ng/min vs. 71.0 ng/min, p < 0.01) were significantly higher in peritoneal effluent from E-treated patients than from P-treated patients. Expression of IL6-R and Gp130 on individual leukocyte types isolated from PD effluent did not differ between E- and P-treated patients. The numbers of white blood cells present in effluent were higher in E-treated than in P-treated patients at all time points, but no significant differences were seen in the differential counts or in the number of exfoliated mesothelial cells. The IL-6 parameters in effluent from E-treated patients correlated with their plasma C-reactive protein. Despite the increased activation of the IL-6 system, no increase in peritoneal permeability as assessed by the dialysate-to-plasma ratio of creatinine in E effluent or by systemic inflammation was observed throughout the study. CONCLUSIONS: Higher levels of IL-6, its soluble receptors, and leukocyte expression were observed in E-treated than in P-treated patients, but this difference was not associated with alterations in peritoneal permeability or systemic inflammation during 1 year of follow-up. Leukocyte counts in effluent from E-treated patients were within the normal range previously reported for glucose solutions. This lack of clinical consequences may be a result of a parallel rise in sIL-6R and sGp130, which are known to control the biologic activity of IL-6. The utility of IL-6 level determinations, in isolation, for assessing the biocompatibility of PD solutions is questionable.
Zobrazit více v PubMed
Mistry CD, Mallick NP, Gokal R. Ultrafiltration with isosmotic solution during long peritoneal dialysis exchanges. Lancet 1987; 2:178–82 PubMed
Mistry CD, Gokal R, Peers E. A randomized multicenter clinical trial comparing isosmolar icodextrin with hyperosmolar glucose solutions in CAPD. MIDAS Study Group. Multicenter Investigation of Icodextrin in Ambulatory Peritoneal Dialysis. Kidney Int 1994; 46:496–503 PubMed
Wolfson M, Piraino B, Hamburger RJ, Morton AR. on behalf of the Icodextrin Study Group. A randomized controlled trial to evaluate the efficacy and safety of icodextrin in peritoneal dialysis. Am J Kidney Dis 2002; 40:1055–65 PubMed
Kim YL. Update on mechanisms of ultrafiltration failure. Perit Dial Int 2009; 29(Suppl 2):S123–7 PubMed
Lameire N. Volume control in peritoneal dialysis patients: role of new dialysis solutions. Blood Purif 2004; 22:44–54 PubMed
Davies SJ, Brown EA, Frandsen NE, Rodrigues AS, Rodriguez–Carmona A, Vychytil A, et al. Longitudinal membrane function in functionally anuric patients treated with APD: data from EAPOS on the effects of glucose and icodextrin prescription. Kidney Int 2005; 67:1609–15 PubMed
Opatrná S, Opatrný K, Jr, Racek J, Sefrna F. Effect of icodextrin-based dialysis solution on peritoneal leptin clearance. Perit Dial Int 2003; 23:89–91 PubMed
Guo A, Wolfson M, Holt R. Early quality of life benefits of icodextrin in peritoneal dialysis. Kidney Int Suppl 2002; (81):S72–9 PubMed
Kuriyama R, Tranæus A, Ikegami T. Icodextrin reduces mortality and the drop-out rate in Japanese peritoneal dialysis patients. Adv Perit Dial 2006; 22:108–10 PubMed
Han SH, Ahn SV, Yun JY, Tranæus A, Han DS. Mortality and technique failure in peritoneal dialysis patients using advanced peritoneal dialysis solution. Am J Kidney Dis 2009; 54:711–20 PubMed
Cooker LA, Holmes CJ, Hoff CM. Biocompatibility of icodextrin. Kidney Int Suppl 2002; (81):S34–45 PubMed
Schalkwijk CG, ter Wee PM, Teerlink T. Reduced 1,2-dicarbonyl compounds in bicarbonate/lactate–buffered peritoneal dialysis fluids based on glucose polymers or amino acids. Perit Dial Int 2000; 20:796–8 PubMed
Parikova A, Zweers MM, Struijk DG, Krediet RT. Peritoneal effluent markers of inflammation in patients treated with icodextrin-based and glucose-based dialysis solutions. Adv Perit Dial 2003; 19:186–90 PubMed
Martikainen TA, Teppo AM, Grönhagen–Riska C, Ekstrand AV. Glucose-free dialysis solutions: inductors of an inflammation or preservers of peritoneal membrane? Perit Dial Int 2005; 25:453–60 PubMed
Moriishi M, Kawanishi H. Icodextrin and intraperitoneal inflammation. Perit Dial Int 2008; 28(Suppl 3):S96–100 PubMed
Lai KN, Lai KB, Lam CW, Chan TM, Li FK, Leung JC. Changes of cytokine profiles during peritonitis in patients on continuous ambulatory peritoneal dialysis. Am J Kidney Dis 2000; 35:644–52 PubMed
Roberts GW, Baird D, Gallagher K, Jones RE, Pepper CJ, Williams JD, et al. Functional effector memory T cells enrich the peritoneal cavity of patients treated with peritoneal dialysis. J Am Soc Nephrol 2009; 20:1895–1900 PubMed PMC
Pecoits–Filho R, Carvalho MJ, Stenvinkel P, Lindholm B, Heimbürger O. Systemic and intraperitoneal interleukin-6 system during the first year of peritoneal dialysis. Perit Dial Int 2006; 26:53–63 PubMed
Devuyst O, Topley N. Peritoneal membrane transport: driving under the influence. Perit Dial Int 2006; 26:35–7 PubMed
Cooker LA, Luneburg P, Holmes CJ, Jones S, Topley N. on behalf of the Bicarbonate/Lactate Study Group. Interleukin-6 levels decrease in effluent from patients dialyzed with bicarbonate/lactate–based peritoneal dialysis solutions. Perit Dial Int 2001; 21(Suppl 3):S102–7 PubMed
Pajek J, Kveder R, Bren A, Gucek A, Ihan A, Osredkar J, et al. Short-term effects of a new bicarbonate/lactate–buffered and conventional peritoneal dialysis fluid on peritoneal and systemic inflammation in CAPD patients: a randomized controlled study. Perit Dial Int 2008; 28:44–52 PubMed
Weiss L, Stegmayr B, Malmsten G, Tejde M, Hadimeri H, Siegert CE, et al. Biocompatibility and tolerability of a purely bicarbonate-buffered peritoneal dialysis solution. Perit Dial Int 2009; 29:647–55 PubMed
Do JY, Kim YL, Park JW, Chang KA, Lee SH, Ryu DH, et al. The association between the vascular endothelial growth factor–to–cancer antigen 125 ratio in peritoneal dialysis effluent and the epithelial-to-mesenchymal transition in continuous ambulatory peritoneal dialysis. Perit Dial Int 2008; 28(Suppl 3):S101–6 PubMed
Nascimento MM, Suliman ME, Silva M, Chinaglia T, Marchioro J, Hayashi SY, et al. Effect of oral N-acetylcysteine treatment on plasma inflammatory and oxidative stress markers in peritoneal dialysis patients: a placebo-controlled study. Perit Dial Int 2010; 30:336–42 PubMed
Bender TO, Witowski J, Ksiazek K, Jörres A. Comparison of icodextrin- and glucose-based peritoneal dialysis fluids in their acute and chronic effects on human peritoneal mesothelial cells. Int J Artif Organs 2007; 30:1075–82 PubMed
Plum J, Lordnejad MR, Grabensee B. Effect of alternative peritoneal dialysis solutions on cell viability, apoptosis/necrosis and cytokine expression in human monocytes. Kidney Int 1998; 54:224–35 PubMed
Parikova A, Zweers MM, Struijk DG, Krediet RT. Peritoneal effluent markers of inflammation in patients treated with icodextrin-based and glucose-based dialysis solutions. Adv Perit Dial 2003; 19:186–90 PubMed
Lewis S, Holmes C. Host defense mechanisms in the peritoneal cavity of continuous ambulatory peritoneal dialysis patients. Perit Dial Int 1991; 11:14–21 PubMed
Paniagua R, Ventura Mde J, Rodríguez E, Sil J, Galindo T, Hurtado ME, et al. Impact of fill volume on peritoneal clearances and cytokine appearance in peritoneal dialysis. Perit Dial Int 2004; 24:156–62 PubMed
Krediet RT, Ho-dac-Pannekeet MM, Imholz AL, Struijk DG. Icodextrin’s effects on peritoneal transport. Perit Dial Int 1997; 17:35–41 PubMed
Hwang YH, Son MJ, Yang J, Kim K, Chung W, Joo KW, et al. Effects of interleukin-6 T15A single nucleotide polymorphism on baseline peritoneal solute transport rate in incident peritoneal dialysis patients. Perit Dial Int 2009; 29:81–8 PubMed
Pachaly MA, do Nascimento MM, Suliman ME, Hayashi SY, Riella MC, Manfro RC, et al. Interleukin-6 is a better predictor of mortality as compared to C-reactive protein, homocysteine, pentosidine and advanced oxidation. Blood Purif 2008; 26:204–10 PubMed