Interactive influence of biotic and abiotic cues on the plasticity of preferred body temperatures in a predator-prey system
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Phenotype MeSH
- Larva MeSH
- Population Dynamics MeSH
- Food Chain MeSH
- Salamandridae growth & development MeSH
- Body Temperature * MeSH
- Models, Theoretical MeSH
- Odonata growth & development MeSH
- Eggs MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The ability to modify phenotypes in response to heterogeneity of the thermal environment represents an important component of an ectotherm's non-genetic adaptive capacity. Despite considerable attention being dedicated to the study of thermally-induced developmental plasticity, whether or not interspecific interactions shape the plastic response in both a predator and its prey remains unknown. We tested several predictions about the joint influence of predator/prey scents and thermal conditions on the plasticity of preferred body temperatures (T (p)) in both actors of this interaction, using a dragonfly nymphs-newt larvae system. Dragonfly nymphs (Aeshna cyanea) and newt eggs (Ichthyosaura alpestris) were subjected to fluctuating cold and warm thermal regimes (7-12 and 12-22°C, respectively) and the presence/absence of a predator or prey chemical cues. Preferred body temperatures were measured in an aquatic thermal gradient (5-33°C) over a 24-h period. Newt T (p) increased with developmental temperature irrespective of the presence/absence of predator cues. In dragonflies, thermal reaction norms for T (p) were affected by the interaction between temperature and prey cues. Specifically, the presence of newt scents in cold regime lowered dragonfly T (p). We concluded that predator-prey interactions influenced thermally-induced plasticity of T (p) but not in a reciprocal fashion. The occurrence of frequency-dependent thermal plasticity may have broad implications for predator-prey population dynamics, the evolution of thermal biology traits, and the consequences of sustaining climate change within ecological communities.
See more in PubMed
Physiol Biochem Zool. 2011 Mar-Apr;84(2):166-74 PubMed
J Exp Biol. 1995;198(Pt 10):2165-75 PubMed
Physiol Biochem Zool. 2003 Jul-Aug;76(4):484-96 PubMed
Evolution. 2002 Oct;56(10):2029-38 PubMed
Biol Lett. 2012 Apr 23;8(2):262-5 PubMed
PLoS Biol. 2010 Apr 27;8(4):e1000357 PubMed
Science. 1960 Feb 26;131(3400):610-1 PubMed
J Evol Biol. 2005 Mar;18(2):415-25 PubMed
Comp Biochem Physiol A Comp Physiol. 1975 Jan 1;50(1A):91-8 PubMed
Science. 1994 Apr 29;264(5159):710-2 PubMed
PLoS One. 2011;6(8):e23842 PubMed
Evolution. 2002 Feb;56(2):361-70 PubMed
Integr Comp Biol. 2003 Jul;43(3):470-7 PubMed
Ecol Lett. 2005 May;8(5):505-12 PubMed
Evolution. 2006 Jul;60(7):1321-36 PubMed
J Exp Biol. 2002 Sep;205(Pt 18):2777-84 PubMed
PLoS One. 2007 Oct 31;2(10):e1084 PubMed
Science. 2001 Oct 12;294(5541):321-6 PubMed
J Comp Physiol B. 2000 Mar;170(2):117-24 PubMed
J Evol Biol. 2009 Jul;22(7):1435-46 PubMed
Trends Ecol Evol. 2010 Jun;25(6):325-31 PubMed
Ecology. 2006 Jun;87(6):1599-604 PubMed
Oecologia. 2008 Feb;155(1):1-10 PubMed
New Phytol. 2007;176(4):749-763 PubMed
PLoS Biol. 2008 Dec 23;6(12):2621-6 PubMed
Evolution. 1992 Oct;46(5):1408-1420 PubMed
Anim Behav. 1998 May;55(5):1387-96 PubMed
Evolution. 1997 Dec;51(6):1983-1992 PubMed
Am Nat. 2006 Nov;168(5):630-44 PubMed
Physiol Biochem Zool. 2006 Mar-Apr;79(2):282-94 PubMed
Am Nat. 1993 Nov;142(5):796-818 PubMed