Stochastic simulation for the inference of transcriptional control network of yeast cyclins genes
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22589416
PubMed Central
PMC3424571
DOI
10.1093/nar/gks440
PII: gks440
Knihovny.cz E-zdroje
- MeSH
- cyklin-dependentní kinasy genetika MeSH
- cykliny biosyntéza genetika MeSH
- genetická transkripce MeSH
- genové regulační sítě * MeSH
- regulace genové exprese u hub * MeSH
- Saccharomyces cerevisiae genetika MeSH
- stochastické procesy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cyklin-dependentní kinasy MeSH
- cykliny MeSH
Cell cycle is controlled by the activity of protein family of cyclins and cyclin-dependent kinases that are periodically expressed during cell cycle and that are conserved among different species. Genome-wide location analysis found that cyclins are controlled by a small number of transcription factors that form closed network of genes controlling each other. To investigate gene expression dynamics of this network, we developed a general procedure for stochastic simulation of gene expression process. Using the binding data, we simulated gene expression of all genes of the network for all possible combinations of regulatory interactions and by statistical comparison with experimentally measured time series excluded those interactions that formed gene expression temporal profiles significantly different from the measured ones. These experiments led to a new definition of the cyclins regulatory network coherent with the binding experiments which are kinetically plausible. Level of influence of individual regulators in control of the regulated genes is defined. Simulation results indicate particular mechanism of regulatory activity of protein complexes involved in the control of cyclins.
Zobrazit více v PubMed
Petricka JJ, Benfey PN. Reconstructing regulatory network transitions. Trends Cell Biol. 2011;21:442–451. PubMed PMC
Pramila T, Wu W, Miles S, Noble WS, Breeden LL. The Forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phase gap in the transcriptional circuitry of the cell cycle. Genes Dev. 2006;20:2266–2278. PubMed PMC
Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell. 1998;9:3273–3297. PubMed PMC
Orlando DA, Lin CY, Bernard A, Wang JY, Socolar JE, Iversen ES, Hartemink AJ, Haase SB. Global control of cell-cycle transcription by coupled CDK and network oscillators. Nature. 2008;453:944–947. PubMed PMC
Nigg EA. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays. 1995;17:471–480. PubMed
Bahler J. Cell-cycle control of gene expression in budding and fission yeast. Annu. Rev. Genet. 2005;39:69–94. PubMed
Koch C, Nasmyth K. Cell cycle regulated transcription in yeast. Curr. Opin. Cell Biol. 1994;6:451–459. PubMed
Koranda M, Schleiffer A, Endler L, Ammerer G. Forkhead-like transcription factors recruit Ndd1 to the chromatin of G2/M-specific promoters. Nature. 2000;406:94–98. PubMed
Lu Y, Mahony S, Benos PV, Rosenfeld R, Simon I, Breeden LL, Bar-Joseph Z. Combined analysis reveals a core set of cycling genes. Genome Biol. 2007;8:R146. PubMed PMC
Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature. 2001;409:533–538. PubMed
MacKay VL, Mai B, Waters L, Breeden LL. Early cell cycle box-mediated transcription of CLN3 and SWI4 contributes to the proper timing of the G(1)-to-S transition in budding yeast. Mol. Cell Biol. 2001;21:4140–4148. PubMed PMC
Simon I, Barnett J, Hannett N, Harbison CT, Rinaldi NJ, Volkert TL, Wyrick JJ, Zeitlinger J, Gifford DK, Jaakkola TS, et al. Serial regulation of transcriptional regulators in the yeast cell cycle. Cell. 2001;106:697–708. PubMed
Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J, et al. Transcriptional regulatory code of a eukaryotic genome. Nature. 2004;431:99–104. PubMed PMC
Gillespie DT. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 1977;81:2340–2361.
Gillespie DT. Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 2007;58:35–55. PubMed
Veitia RA. A sigmoidal transcriptional response: cooperativity, synergy and dosage effects. Biol. Rev. Camb. Philos. Soc. 2003;78:149–170. PubMed
Lodish L, Berk A, Zipurski SL, Matsudaira P, Baltimore D, Darnell JE., Jr . New York: W. H. Freeman and Company; 2000. Molecular Cell Biology.
Bloom J, Cross FR. Multiple levels of cyclin specificity in cell-cycle control. Nat. Rev. Mol. Cell Biol. 2007;8:149–160. PubMed