Structural analysis of mycolic acids from phenol-degrading strain of Rhodococcus erythropolis by liquid chromatography-tandem mass spectrometry
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- biotransformace MeSH
- chromatografie kapalinová MeSH
- fenol metabolismus MeSH
- huminové látky MeSH
- kultivační média chemie MeSH
- kyseliny mykolové chemie metabolismus MeSH
- Rhodococcus chemie metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- uhlík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fenol MeSH
- huminové látky MeSH
- kultivační média MeSH
- kyseliny mykolové MeSH
- uhlík MeSH
We used reversed phase liquid chromatography-electrospray ionization tandem mass spectrometry for direct analysis of mycolic acids (MAs) from four different cultivations of Rhodococcus erythropolis. This technique enabled us to identify and quantify the specific molecular species of MAs directly from lipid extracts of the bacterium, including the determination of their basic characteristics such as retention time and mass spectra. We identified a total of 60 molecular species of MAs by means of LC/MS. In collision-induced dissociation tandem mass spectrometry, the [M-H](-) ions eliminated two residues, i.e., meroaldehyde and carboxylate anions containing α-alkyl chains. The structural information from these fragment ions affords structural assignment of the mycolic acids, including the lengths and number of double bond(s). Two strains, i.e., R. erythropolis CCM 2595 and genetically modified strain CCM 2595 pSRK 21 phe were cultivated on two different substrates (phenol and phenol with addition of humic acids as a sole carbon source). The addition of humic acids showed that there is a marked increase of unsaturated mycolic acids, mostly in the range of 20-100 %. This effect is more pronounced in the R. erythropolis CCM 2595 strain.
Zobrazit více v PubMed
Environ Int. 2009 Jan;35(1):162-77 PubMed
J Microbiol Methods. 1999 Feb;35(1):53-63 PubMed
Annu Rev Microbiol. 2002;56:743-68 PubMed
J Microbiol Methods. 2000 Mar;40(1):1-9 PubMed
J Chromatogr A. 2006 Sep 15;1127(1-2):34-44 PubMed
J Chromatogr A. 1999 Oct 8;858(1):13-31 PubMed
J Bacteriol. 1997 Oct;179(19):6205-7 PubMed
APMIS. 1994 Mar;102(3):161-9 PubMed
Mol Microbiol. 1997 Jan;23(2):313-22 PubMed
Appl Microbiol Biotechnol. 2006 May;70(5):605-11 PubMed
J Microbiol Methods. 2009 May;77(2):165-77 PubMed
Lipids. 2010 Aug;45(8):743-56 PubMed
Int J Food Microbiol. 2007 Apr 1;115(1):35-42 PubMed
Appl Microbiol Biotechnol. 2001 Oct;57(1-2):34-42 PubMed
J Gen Microbiol. 1976 Jan;92(1):188-99 PubMed
Appl Environ Microbiol. 2003 Dec;69(12):7019-27 PubMed
Clin Microbiol Rev. 2001 Oct;14(4):704-26, table of contents PubMed
Appl Microbiol Biotechnol. 2003 Jun;61(5-6):523-7 PubMed
J Hazard Mater. 2007 Oct 1;149(1):42-8 PubMed
Anal Biochem. 2011 Feb 1;409(1):112-22 PubMed
Nat Prod Rep. 2007 Apr;24(2):267-77 PubMed
Zentralbl Bakteriol. 1989 Dec;272(2):154-70 PubMed
Phytochemistry. 2011 Oct;72(14-15):1914-26 PubMed
Environ Microbiol. 2011 Jun;13(6):1577-89 PubMed
Biotechnol Adv. 2011 Nov-Dec;29(6):913-22 PubMed