Quantitative MR imaging and spectroscopy of brain tumours: a step forward?

. 2012 Nov ; 22 (11) : 2307-18. [epub] 20120612

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22688126

OBJECTIVES: A prospective quantitative MR study of brain tumours was performed to show the potential of combining different MR techniques to distinguish various disease processes in routine clinical practice. METHODS: Twenty-three patients with various intracranial tumours before treatment (diagnosis confirmed by a biopsy) and 59 healthy subjects were examined on a 3-T system by conventional MR imaging, 1H spectroscopic imaging, diffusion tensor imaging and T2 relaxometry. Metabolic concentrations and their ratios, T2 relaxation times and mean diffusivities were calculated and correlated on a pixel-by-pixel basis and compared to control data. RESULTS: Different tumour types and different localisations revealed specific patterns of correlations between metabolic concentrations and mean diffusivity or T2 relaxation times. The patterns distinguish given tissue states in the examined area: healthy tissue, tissue infiltrated by tumour, active tumour, oedema infiltrated by tumour, oedema, etc. This method is able to describe the complexity of a highly heterogeneous tissue in the tumour and its vicinity, and determines crucial parameters for tissue differentiation. CONCLUSIONS: A combination of different MR parameters on a pixel-by-pixel basis in individual patients enables better identification of the tumour type, direction of proliferation and assessment of the tumour extension. KEY POINTS: • Magnetic resonance offers many different methods of examining the brain. • A combination of quantitative MR parameters helps distinguish different brain lesions • Different tumour types revealed specific correlation patterns amongst different MR parameters • The correlation patterns reflect highly heterogeneous complex tissue within tumours.

Zobrazit více v PubMed

Magn Reson Imaging. 2002 May;20(4):343-9 PubMed

Clin Radiol. 2007 Feb;62(2):109-19 PubMed

Neuroradiology. 1997 Jul;39(7):483-9 PubMed

Radiology. 1988 Dec;169(3):779-85 PubMed

Eur Radiol. 2003 Mar;13(3):582-91 PubMed

MAGMA. 2009 Feb;22(1):19-31 PubMed

NMR Biomed. 2006 Jun;19(4):463-75 PubMed

J Magn Reson Imaging. 2006 Sep;24(3):543-8 PubMed

Radiology. 2002 Jul;224(1):177-83 PubMed

Clin Radiol. 2004 Jan;59(1):77-85 PubMed

Clin Neurol Neurosurg. 2009 Jul;111(6):527-35 PubMed

Radiology. 2006 Mar;238(3):958-69 PubMed

Acta Neurochir Suppl (Wien). 1994;60:344-6 PubMed

Magn Reson Imaging. 2002 Nov;20(9):635-41 PubMed

Eur Radiol. 2008 Aug;18(8):1727-35 PubMed

Neuroradiology. 2006 Mar;48(3):150-9 PubMed

AJNR Am J Neuroradiol. 2001 Jun-Jul;22(6):1081-8 PubMed

Magn Reson Med. 2009 Dec;62(6):1646-51 PubMed

Magn Reson Med. 2003 Feb;49(2):223-32 PubMed

J Neurooncol. 2008 Apr;87(2):181-7 PubMed

Neurosurgery. 2004 May;54(5):1111-7; discussion 1117-9 PubMed

J Magn Reson Imaging. 2012 Jun;35(6):1332-7 PubMed

Eur Radiol. 2002 Aug;12(8):2056-61 PubMed

J Magn Reson Imaging. 2008 Apr;27(4):718-25 PubMed

MAGMA. 2006 Feb;19(1):1-14 PubMed

J Neurooncol. 2005 May;72(3):273-80 PubMed

J Magn Reson Imaging. 2005 Jun;21(6):701-8 PubMed

J Neurosurg. 2007 Apr;106(4):660-6 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...