The Diagnostic Ability of Follow-Up Imaging Biomarkers after Treatment of Glioblastoma in the Temozolomide Era: Implications from Proton MR Spectroscopy and Apparent Diffusion Coefficient Mapping
Language English Country United States Media print-electronic
Document type Clinical Trial, Journal Article, Research Support, Non-U.S. Gov't
PubMed
26448943
PubMed Central
PMC4584055
DOI
10.1155/2015/641023
Knihovny.cz E-resources
- MeSH
- Chemoradiotherapy methods MeSH
- Dacarbazine analogs & derivatives therapeutic use MeSH
- Glioblastoma diagnosis metabolism therapy MeSH
- Outcome Assessment, Health Care methods MeSH
- Middle Aged MeSH
- Humans MeSH
- Neoplasm Recurrence, Local diagnosis metabolism prevention & control MeSH
- Molecular Imaging methods MeSH
- Biomarkers, Tumor metabolism MeSH
- Brain Neoplasms diagnosis metabolism therapy MeSH
- Follow-Up Studies MeSH
- Prognosis MeSH
- Proton Magnetic Resonance Spectroscopy methods MeSH
- Reproducibility of Results MeSH
- Sensitivity and Specificity MeSH
- Temozolomide MeSH
- Treatment Outcome MeSH
- Diffusion Tensor Imaging MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Clinical Trial MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Dacarbazine MeSH
- Biomarkers, Tumor MeSH
- Temozolomide MeSH
OBJECTIVE: To prospectively determine institutional cut-off values of apparent diffusion coefficients (ADCs) and concentration of tissue metabolites measured by MR spectroscopy (MRS) for early differentiation between glioblastoma (GBM) relapse and treatment-related changes after standard treatment. MATERIALS AND METHODS: Twenty-four GBM patients who received gross total resection and standard adjuvant therapy underwent MRI examination focusing on the enhancing region suspected of tumor recurrence. ADC maps, concentrations of N-acetylaspartate, choline, creatine, lipids, and lactate, and metabolite ratios were determined. Final diagnosis as determined by biopsy or follow-up imaging was correlated to the results of advanced MRI findings. RESULTS: Eighteen (75%) and 6 (25%) patients developed tumor recurrence and pseudoprogression, respectively. Mean time to radiographic progression from the end of chemoradiotherapy was 5.8 ± 5.6 months. Significant differences in ADC and MRS data were observed between those with progression and pseudoprogression. Recurrence was characterized by N-acetylaspartate ≤ 1.5 mM, choline/N-acetylaspartate ≥ 1.4 (sensitivity 100%, specificity 91.7%), N-acetylaspartate/creatine ≤ 0.7, and ADC ≤ 1300 × 10(-6) mm(2)/s (sensitivity 100%, specificity 100%). CONCLUSION: Institutional validation of cut-off values obtained from advanced MRI methods is warranted not only for diagnosis of GBM recurrence, but also as enrollment criteria in salvage clinical trials and for reporting of outcomes of initial treatment.
See more in PubMed
Stupp R., Mason W. P., van den Bent M. J., et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. The New England Journal of Medicine. 2005;352(10):987–996. doi: 10.1056/nejmoa043330. PubMed DOI
Brandsma D., Stalpers L., Taal W., Sminia P., van den Bent M. J. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. The Lancet Oncology. 2008;9(5):453–461. doi: 10.1016/s1470-2045(08)70125-6. PubMed DOI
Kumar A. J., Leeds N. E., Fuller G. N., et al. Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology. 2000;217(2):377–384. doi: 10.1148/radiology.217.2.r00nv36377. PubMed DOI
Brandes A. A., Tosoni A., Spagnolli F., et al. Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: pitfalls in neurooncology. Neuro-Oncology. 2008;10(3):361–367. doi: 10.1215/15228517-2008-008. PubMed DOI PMC
Chakravarti A., Erkkinen M. G., Nestler U., et al. Temozolomide-mediated radiation enhancement in glioblastoma: a report on underlying mechanisms. Clinical Cancer Research. 2006;12(15):4738–4746. doi: 10.1158/1078-0432.ccr-06-0596. PubMed DOI
Brandes A. A., Franceschi E., Tosoni A., et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. Journal of Clinical Oncology. 2008;26(13):2192–2197. doi: 10.1200/JCO.2007.14.8163. PubMed DOI
Lamborn K. R., Yung W. K. A., Chang S. M., et al. Progression-free survival: an important end point in evaluating therapy for recurrent high-grade gliomas. Neuro-Oncology. 2008;10(2):162–170. doi: 10.1215/15228517-2007-062. PubMed DOI PMC
Radbruch A., Fladt J., Kickingereder P., et al. Pseudoprogression in patients with glioblastoma: clinical relevance despite low incidence. Neuro-Oncology. 2014;17(1):151–159. doi: 10.1093/neuonc/nou129. PubMed DOI PMC
Friedman H. S., Prados M. D., Wen P. Y., et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. Journal of Clinical Oncology. 2009;27(28):4733–4740. doi: 10.1200/jco.2008.19.8721. PubMed DOI
Kao H.-W., Chiang S.-W., Chung H.-W., Tsai F. Y., Chen C.-Y. Advanced MR imaging of gliomas: an update. BioMed Research International. 2013;2013:14. doi: 10.1155/2013/970586.970586 PubMed DOI PMC
Bulik M., Jancalek R., Vanicek J., Skoch A., Mechl M. Potential of MR spectroscopy for assessment of glioma grading. Clinical Neurology and Neurosurgery. 2013;115(2):146–153. doi: 10.1016/j.clineuro.2012.11.002. PubMed DOI
Roy B., Gupta R. K., Maudsley A. A., et al. Utility of multiparametric 3-T MRI for glioma characterization. Neuroradiology. 2013;55(5):603–613. doi: 10.1007/s00234-013-1145-x. PubMed DOI PMC
Ahmed R., Oborski M. J., Hwang M., Lieberman F. S., Mountz J. M. Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods. Cancer Management and Research. 2014;6(1):149–170. doi: 10.2147/cmar.s54726. PubMed DOI PMC
Ion-Margineanu A., van Cauter S., Sima D. M., et al. Tumour relapse prediction using multiparametric MR data recorded during follow-up of GBM patients. BioMed Research International. In press. PubMed PMC
Provencher S. W. Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR in Biomedicine. 2001;14(4):260–264. doi: 10.1002/nbm.698. PubMed DOI
Jiru F., Skoch A., Wagnerova D., Dezortova M., Hajek M. jSIPRO—analysis tool for magnetic resonance spectroscopic imaging. Computer Methods and Programs in Biomedicine. 2013;112(1):173–188. doi: 10.1016/j.cmpb.2013.06.018. PubMed DOI
Wen P. Y., Macdonald D. R., Reardon D. A., et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. Journal of Clinical Oncology. 2010;28(11):1963–1972. doi: 10.1200/jco.2009.26.3541. PubMed DOI
Macdonald D. R., Cascino T. L., Schold S. C., Jr., Cairncross J. G. Response criteria for phase II studies of supratentorial malignant glioma. Journal of Clinical Oncology. 1990;8(7):1277–1280. PubMed
Gerstner E. R., McNamara M. B., Norden A. D., LaFrankie D., Wen P. Y. Effect of adding temozolomide to radiation therapy on the incidence of pseudo-progression. Journal of Neuro-Oncology. 2009;94(1):97–101. doi: 10.1007/s11060-009-9809-4. PubMed DOI
da Cruz L. C. H., Jr., Rodriguez I., Domingues R. C., Gasparetto E. L., Sorensen A. G. Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. American Journal of Neuroradiology. 2011;32(11):1978–1985. doi: 10.3174/ajnr.a2397. PubMed DOI PMC
Fabi A., Russillo M., Metro G., Vidiri A., Di Giovanni S., Cognetti F. Pseudoprogression and MGMT status in glioblastoma patients: implications in clinical practice. Anticancer Research. 2009;29(7):2607–2610. PubMed
Kong D.-S., Kim S. T., Kim E.-H., et al. Diagnostic dilemma of pseudoprogression in the treatment of newly diagnosed glioblastomas: the role of assessing relative cerebral blood flow volume and oxygen-6-methylguanine-DNA methyltransferase promoter methylation status. American Journal of Neuroradiology. 2011;32(2):382–387. doi: 10.3174/ajnr.A2286. PubMed DOI PMC
Wagnerova D., Herynek V., Malucelli A., et al. Quantitative MR imaging and spectroscopy of brain tumours: a step forward? European Radiology. 2012;22(11):2307–2318. doi: 10.1007/s00330-012-2502-6. PubMed DOI
D’Souza M. M., Sharma R., Jaimini A., et al. 11C-MET PET/CT and advanced MRI in the evaluation of tumor recurrence in high-grade gliomas. Clinical Nuclear Medicine. 2014;39(9):791–798. doi: 10.1097/rlu.0000000000000532. PubMed DOI
Wiebenga O. T., Klauser A. M., Nagtegaal G. J., et al. Longitudinal absolute metabolite quantification of white and gray matter regions in healthy controls using proton MR spectroscopic imaging. NMR in Biomedicine. 2014;27(3):304–311. doi: 10.1002/nbm.3063. PubMed DOI
Minati L., Aquino D., Bruzzone M. G., Erbetta A. Quantitation of normal metabolite concentrations in six brain regions by in-vivoH-MR spectroscopy. Journal of Medical Physics. 2010;35(3):154–163. doi: 10.4103/0971-6203.62128. PubMed DOI PMC
Chawla S., Zhang Y., Wang S., et al. Proton magnetic resonance spectroscopy in differentiating glioblastomas from primary cerebral lymphomas and brain metastases. Journal of Computer Assisted Tomography. 2010;34(6):836–841. doi: 10.1097/RCT.0b013e3181ec554e. PubMed DOI
Polley M.-Y. C., Lamborn K. R., Chang S. M., Butowski N., Clarke J. L., Prados M. Six-month progression-free survival as an alternative primary efficacy endpoint to overall survival in newly diagnosed glioblastoma patients receiving temozolomide. Neuro-Oncology. 2010;12(3):274–282. doi: 10.1093/neuonc/nop034. PubMed DOI PMC
Trippa L., Wen P. Y., Parmigiani G., Berry D. A., Alexander B. M. Combining progression-free survival and overall survival as a novel composite endpoint for glioblastoma trials. Neuro-Oncology. 2015 doi: 10.1093/neuonc/nou345. PubMed DOI PMC
Hein P. A., Eskey C. J., Dunn J. F., Hug E. B. Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. The American Journal of Neuroradiology. 2004;25(2):201–209. PubMed PMC
Weybright P., Sundgren P. C., Maly P., et al. Differentiation between brain tumor recurrence and radiation injury using MR spectroscopy. American Journal of Roentgenology. 2005;185(6):1471–1476. doi: 10.2214/ajr.04.0933. PubMed DOI
Zeng Q.-S., Li C.-F., Liu H., Zhen J.-H., Feng D.-C. Distinction between recurrent glioma and radiation injury using magnetic resonance spectroscopy in combination with diffusion-weighted imaging. International Journal of Radiation, Oncology, Biology, Physics. 2007;68(1):151–158. doi: 10.1016/j.ijrobp.2006.12.001. PubMed DOI
Nakajima T., Kumabe T., Kanamori M., et al. Differential diagnosis between radiation necrosis and glioma progression using sequential proton magnetic resonance spectroscopy and methionine positron emission tomography. Neurologia Medico-Chirurgica. 2009;49(9):394–401. doi: 10.2176/nmc.49.394. PubMed DOI
Bobek-Billewicz B., Stasik-Pres G., Majchrzak H., Zarudzki Ł. Differentiation between brain tumor recurrence and radiation injury using perfusion, diffusion-weighted imaging and MR spectroscopy. Folia Neuropathologica. 2010;48(2):81–92. PubMed
Amin A., Moustafa H., Ahmed E., El-Toukhy M. Glioma residual or recurrence versus radiation necrosis: accuracy of pentavalent technetium-99m-dimercaptosuccinic acid [Tc-99m (V) DMSA] brain SPECT compared to proton magnetic resonance spectroscopy (1H-MRS): initial results. Journal of Neuro-Oncology. 2012;106(3):579–587. doi: 10.1007/s11060-011-0694-2. PubMed DOI