Cortical thickness mapping to identify focal osteoporosis in patients with hip fracture

. 2012 ; 7 (6) : e38466. [epub] 20120611

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22701648

Grantová podpora
17822 Arthritis Research UK - United Kingdom
20109 Versus Arthritis - United Kingdom

BACKGROUND: Individuals with osteoporosis are predisposed to hip fracture during trips, stumbles or falls, but half of all hip fractures occur in those without generalised osteoporosis. By analysing ordinary clinical CT scans using a novel cortical thickness mapping technique, we discovered patches of markedly thinner bone at fracture-prone regions in the femurs of women with acute hip fracture compared with controls. METHODS: We analysed CT scans from 75 female volunteers with acute fracture and 75 age- and sex-matched controls. We classified the fracture location as femoral neck or trochanteric before creating bone thickness maps of the outer 'cortical' shell of the intact contra-lateral hip. After registration of each bone to an average femur shape and statistical parametric mapping, we were able to visualise and quantify statistically significant foci of thinner cortical bone associated with each fracture type, assuming good symmetry of bone structure between the intact and fractured hip. The technique allowed us to pinpoint systematic differences and display the results on a 3D average femur shape model. FINDINGS: The cortex was generally thinner in femoral neck fracture cases than controls. More striking were several discrete patches of statistically significant thinner bone of up to 30%, which coincided with common sites of fracture initiation (femoral neck or trochanteric). INTERPRETATION: Femoral neck fracture patients had a thumbnail-sized patch of focal osteoporosis at the upper head-neck junction. This region coincided with a weak part of the femur, prone to both spontaneous 'tensile' fractures of the femoral neck, and as a site of crack initiation when falling sideways. Current hip fracture prevention strategies are based on case finding: they involve clinical risk factor estimation to determine the need for single-plane bone density measurement within a standard region of interest (ROI) of the femoral neck. The precise sites of focal osteoporosis that we have identified are overlooked by current 2D bone densitometry methods.

Zobrazit více v PubMed

Pulkkinen P, Gluer CC, Jamsa T. Investigation of differences between hip fracture types: a worthy strategy for improved risk assessment and fracture prevention. Bone. 2011;49:604. PubMed

Sievanen H, Kannus P, Jarvinen TL. Bone quality: an empty term. PLoS Med. 2007;4:e27. PubMed PMC

Cristofolini L, Juszczyk M, Martelli S, Taddei F, Viceconti M. In vitro replication of spontaneous fractures of the proximal human femur. J Biomech. 2007;40:2845. PubMed

Yli-Kyyny T, Tamminen I, Syri J, Venesmaa P, Kröger H. Bilateral hip pain. The Lancet. 2011;377:2248. PubMed

Wainwright SA, Marshall LM, Ensrud KE, Cauley JA, Black DM. Hip fracture in women without osteoporosis. J Clin Endocrinol Metab. 2005;90:2793. PubMed

de Bakker PM, Manske SL, Ebacher V, Oxland TR, Cripton PA. During sideways falls proximal femur fractures initiate in the superolateral cortex: evidence from high-speed video of simulated fractures. J Biomech. 2009;42:1925. PubMed

Feik SA, Thomas CD, Clement JG. Age-related changes in cortical porosity of the midshaft of the human femur. J Anat 191 (Pt. 1997;3):416. PubMed PMC

Poole KE, Mayhew PM, Rose CM, Brown JK, Bearcroft PJ. Changing structure of the femoral neck across the adult female lifespan. J Bone Miner Res. 2010;25:491. PubMed

Johannesdottir F, Poole KE, Reeve J, Siggeirsdottir K, Aspelund T. Distribution of cortical bone in the femoral neck and hip fracture: a prospective case-control analysis of 143 incident hip fractures; the AGES-REYKJAVIK Study. Bone. 2011;48:1276. PubMed PMC

Mayhew PM, Thomas CD, Clement JG, Loveridge N, Beck TJ. Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet. 2005;366:135. PubMed

Gluer CC, Cummings SR, Pressman A, Li J, Gluer K. Prediction of hip fractures from pelvic radiographs: the study of osteoporotic fractures. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res. 1994;9:677. PubMed

Hansen S, Jensen JE, Ahrberg F, Hauge EM, Brixen K. The combination of structural parameters and areal bone mineral density improves relation to proximal femur strength: an in vitro study with high-resolution peripheral quantitative computed tomography. Calcif Tissue Int. 2011;89:346. PubMed

Holzer G, von Skrbensky G, Holzer LA, Pichl W. Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J Bone Miner Res. 2009;24:474. PubMed

Borggrefe J, Graeff C, Nickelsen TN, Marin F, Gluer CC. Quantitative Computed Tomography Assessment of the Effects of 24 months of Teriparatide Treatment on 3-D Femoral Neck Bone Distribution, Geometry and Bone Strength: Results from the EUROFORS Study. J Bone Miner Res. 2009;25:481. PubMed

Poole KE, Treece GM, Ridgway GR, Mayhew PM, Borggrefe J. Targeted regeneration of bone in the osteoporotic human femur. PLoS One. 2011;6:e16190. PubMed PMC

Treece GM, Gee AH, Mayhew PM, Poole KE. High resolution cortical bone thickness measurement from clinical CT data. Med Image Anal. 2010;14:290. PubMed PMC

Vaculík J, Malkus T, Majerníček M, Podškubka A, Dungl P. Incidence of proximal femoral fractures. Ortopedie. 2007;1:68.

Rueckert D, Frangi AF, Schnabel JA. Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration. IEEE Trans Med Imaging. 2003;22:1025. PubMed

Friston KJ, Holmes AP, Worsley KJ, Poline J-P, Frith CD. Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping. 1994;2:210.

Worsley K, Taylor J, Carbonell F, Chung M, Duerden E. SurfStat: A Matlab toolbox for the statistical analysis of univariate and multivariate surface and volumetric data using linear mixed effects models and random field theory. NeuroImage Organization for Human Brain Mapping 2009 Annual Meeting. 2009;47:S102.

Bessho M, Ohnishi I, Matsumoto T, Ohashi S, Matsuyama J. Prediction of proximal femur strength using a CT-based nonlinear finite element method: differences in predicted fracture load and site with changing load and boundary conditions. Bone. 2009;45:231. PubMed

Parker MJ, Twemlow TR. Spontaneous hip fractures, 44/872 in a prospective study. Acta Orthop Scand. 1997;68:326. PubMed

Yang KH, Shen KL, Demetropoulos CK, King AI, Kolodziej P. The relationship between loading conditions and fracture patterns of the proximal femur. Journal of Biomechanical Engineering-Transactions of the Asme. 1996;118:578. PubMed

Freeman MA, Todd RC, Pirie CJ. The role of fatigue in the pathogenesis of senile femoral neck fractures. J Bone Joint Surg Br. 1974;56-B:702. PubMed

Odgers PNB. Two details about the neck of the femur: (1) The eminentia. (2) The empreinte. Journal of Anatomy. 1931;65:U321. PubMed PMC

Panzer S, Esch U, Abdulazim AN, Augat P. Herniation pits and cystic-appearing lesions at the anterior femoral neck: an anatomical study by MSCT and microCT. Skeletal Radiol. 2010;39:654. PubMed

Pitt M, Graham A, Shipman J, Birkby W (1982 ) Herniation pit of the femoral neck American Journal of Roentgenology 138 1115–1121. PubMed

Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet. 2010;375:1736. PubMed

Bell KL, Loveridge N, Power J, Garrahan N, Meggitt BF. Regional differences in cortical porosity in the fractured femoral neck. Bone. 1999;24:64. PubMed

Cristofolini L, Schileo E, Juszczyk M, Taddei F, Martelli S. Mechanical testing of bones: the positive synergy of finite-element models and in vitro experiments. Philos Transact A Math Phys Eng Sci. 2010;368:2763. PubMed

Li W, Kornak J, Harris T, Keyak J, Li C. Identify fracture-critical regions inside the proximal femur using statistical parametric mapping. Bone. 2009;44:602. PubMed PMC

Kaptoge S, Beck TJ, Reeve J, Stone KL, Hillier TA. Prediction of incident hip fracture risk by femur geometry variables measured by hip structural analysis in the study of osteoporotic fractures. J Bone Miner Res. 2008;23:1904. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...