Left-right differences in the proximal femur's strength of post-menopausal women: a multicentric finite element study
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, multicentrická studie, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural, práce podpořená grantem
Grantová podpora
N01 AG012100
NIA NIH HHS - United States
Intramural NIH HHS - United States
N01-AG-1-2100
NIA NIH HHS - United States
PubMed
26576543
PubMed Central
PMC5908234
DOI
10.1007/s00198-015-3404-7
PII: 10.1007/s00198-015-3404-7
Knihovny.cz E-zdroje
- Klíčová slova
- Computed tomography, Finite element, Multicentric study, Post-menopausal women, Proximal femur’s strength, Side differences,
- MeSH
- absorpční fotometrie metody MeSH
- analýza metodou konečných prvků MeSH
- femur anatomie a histologie diagnostické zobrazování fyziologie MeSH
- kostní denzita fyziologie MeSH
- krček femuru anatomie a histologie fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- počítačová rentgenová tomografie metody MeSH
- postmenopauza fyziologie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- zatížení muskuloskeletálního systému fyziologie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
UNLABELLED: The strength of both femurs was estimated in 198 post-menopausal women through subject-specific finite element models. Important random differences between contralateral femurs were found in a significant number of subjects, pointing to the usefulness of further studies to understand if strength-based classification of patients at risk of fracture can be affected by laterality issues. INTRODUCTION: Significant, although small, differences exist in mineral density and anatomy of contralateral proximal femurs. These differences, and their combined effect, may result in a side difference in femurs' strength. However, this has never been tested on a large sample of a homogenous population. METHODS: The strength of both femurs was estimated in 198 post-menopausal women through CT-derived finite element models, built using a validated procedure, in sideways fall conditions. The impact of the resulting asymmetry on the classification of subjects at risk of fracture was analysed. RESULTS: The small difference observed between sides (the right femur on average 4 % stronger than the left) was statistically significant but mechanically negligible. In contrast, higher random differences (absolute difference between sides with respect to mean value) were found: on average close to 15 % (compared to 9.2 % for areal bone mineral density (aBMD) alone), with high scatter among the subjects. When using a threshold-based classification, the right and left femurs were discordant up to over 20 % of cases (K always lower than 0.60) but the left femur was concordant (mean K = 0.84) with the minimum strength between right and left. CONCLUSION: Considering both femurs may be important when trying to classify subjects at risk of failure with strength estimates. Future studies including fracture assessment would be necessary to quantify the real impact.
Centre for Muscle and Bone Research Charité Universitätsmedizin Berlin Germany
Icelandic Heart Association Kópavogur Iceland
INSERM Research Unit 1033 and Université de Lyon Lyon France
Laboratorio di Bioingegneria Computazionale Istituto Ortopedico Rizzoli Bologna Italy
Technical University of Liberec Liberec Czech Republic
Zobrazit více v PubMed
Genant H, Cooper C, Poor G, Reid I. Interim Report and Recommendations of the World Health Organization Task-Force for Osteoporosis. Osteoporos Int. 1999:259–264. PubMed
Wainwright SA, Marshall LM, Ensrud KE, et al. Hip fracture in women without osteoporosis. J Clin Endocrinol Metab. 2005;90:2787–93. PubMed
Kopperdahl DL, Aspelund T, Hoffmann PF, et al. Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J bone Miner Res. 2014;29:570–80. PubMed PMC
Bouxsein ML. Determinants of skeletal fragility. Best Pract Res Clin Rheumatol. 2005;19:897–911. PubMed
Keyak JH, Sigurdsson S, Karlsdottir G, et al. Male-female differences in the association between incident hip fracture and proximal femoral strength: a finite element analysis study. Bone. 2011;48:1239–45. PubMed PMC
Lang TF, Sigurdsson S, Karlsdottir G, et al. Age-related loss of proximal femoral strength in elderly men and women: the Age Gene/Environment Susceptibility Study--Reykjavik. Bone. 2012;50:743–8. PubMed PMC
Orwoll ES, Marshall LM, Nielson CM, et al. Finite element analysis of the proximal femur and hip fracture risk in older men. J Bone Miner Res. 2009;24:475–483. PubMed PMC
Amin S, Kopperdhal DL, Melton LJ, et al. Association of hip strength estimates by finite-element analysis with fractures in women and men. J Bone Miner Res. 2011;26:1593–600. PubMed PMC
Petley G, Taylor P, Murrills A. An Investigation of the Diagnostic Value of Bilateral Femoral Neck Bone Mineral Density Measurements. Osteoporos Int. 2000;11:675–9. PubMed
Bonnick SL, Nichols DL, Sanborn CF, et al. Right and left proximal femur analyses: is there a need to do both? Calcif Tissue Int. 1996;58:307–10. PubMed
Hamdy R, Kiebzak GM, Seier E, Watts NB. The prevalence of significant left-right differences in hip bone mineral density. Osteoporos Int. 2006;17:1772–80. PubMed
Yang R, Tsai K, Chieng P, Liu T. Symmetry of bone mineral density at the proximal femur with emphasis on the effect of side dominance. Calcif Tissue Int. 1997;61:189–91. PubMed
Young EY, Gebhart J, Cooperman D, Ahn NU. Are the left and right proximal femurs symmetric? Clin Orthop Relat Res. 2013;471:1593–601. PubMed PMC
Auerbach BM, Ruff CB. Limb bone bilateral asymmetry: variability and commonality among modern humans. J Hum Evol. 2006;50:203–18. PubMed
Eckstein F, Wunderer C, Boehm H, et al. Reproducibility and Side Differences of Mechanical Tests for Determining the Structural Strength of the Proximal Femur. J Bone Min Res. 2004;19:379–385. PubMed
Harris TB, Launer LJ, Eiriksdottir G, et al. Age, Gene/Environment Susceptibility-Reykjavik Study: multidisciplinary applied phenomics. Am J Epidemiol. 2007;165:1076–87. PubMed PMC
Falcinelli C, Schileo E, Balistreri L, et al. Multiple loading conditions improve the association of finite element bone strength estimates with proximal femur fractures: a preliminary study in elderly women. Bone. 2014;67:71–80. PubMed
Kalender W, Felsenberg D. The European Spine Phantom — a tool for standardization and quality control in spinal bone mineral measurements by DXA and QCT. Eur. J. Radiol 1995 PubMed
Faulkner KG, Glüer CC, Grampp S, Genant HK. Cross-calibration of liquid and solid QCT calibration standards: Corrections to the UCSF normative data. Osteoporos Int. 1993;3:36–42. PubMed
Khoo BCC, Brown K, Cann C, et al. Comparison of QCT-derived and DXA-derived areal bone mineral density and T scores. Osteoporos Int. 2009;20:1539–45. PubMed
Schileo E, Taddei F, Malandrino A, et al. Subject-specific finite element models can accurately predict strain levels in long bones. J Biomech. 2007;40:2982–9. PubMed
Schileo E, Taddei F, Cristofolini L, Viceconti M. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J Biomech. 2008;41:356–367. PubMed
Schileo E, Balistreri L, Grassi L, et al. Linear subject-specific finite element models are able to estimate failure load of human femora tested in vitro under stance and fall loading conditions. J Biomech. (in press) DOI: http://dx.doi.org/10.1016/j.jbiomech.2014.08.024. PubMed DOI
Helgason B, Taddei F, Pálsson H, et al. A modified method for assigning material properties to FE models of bones. Med Eng Phys. 2008;30:444–53. PubMed
Taddei F, Schileo E, Helgason B, et al. The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements. Med Eng Phys. 2007;29:973–9. PubMed
Schileo E, Dall’ara E, Taddei F, et al. An accurate estimation of bone density improves the accuracy of subject-specific finite element models. J Biomech. 2008;41:2483–91. PubMed
Morgan EF, Bayraktar HH, Keaveny TM. Trabecular bone modulus–density relationships depend on anatomic site. J Biomech. 2003;36:897–904. PubMed
Taddei F, Pancanti A, Viceconti M. An improved method for the automatic mapping of computed tomography numbers onto finite element models. Med Eng Phys. 2004;26:61–69. PubMed
Bayraktar HH, Morgan EF, Niebur GL, et al. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech. 2004;37:27–35. PubMed
Bergmann G, Deuretzbacher G, Heller M, et al. Hip contact forces and gait patterns from routine activities. J Biomech. 2001;34:859–871. PubMed
Pinilla TP, Boardman KC, Bouxsein ML, et al. Impact direction from a fall influences the failure load of the proximal femur as much as age-related bone loss. Calcif Tissue Int. 1996;58:231–5. PubMed
Grassi L, Schileo E, Taddei F, et al. Accuracy of finite element predictions in sideways load configurations for the proximal human femur. J Biomech. 2012;45:394–9. PubMed
Pierre Ma, Zurakowski D, Nazarian A, et al. Assessment of the bilateral asymmetry of human femurs based on physical, densitometric, and structural rigidity characteristics. J Biomech. 2010;43:2228–36. PubMed PMC
Poole KE, Treece GM, Mayhew PM, et al. Cortical thickness mapping to identify focal osteoporosis in patients with hip fracture. PLoS One. 2012;7:e38466. doi: 10.1371/journal.pone.0038466. PubMed DOI PMC
Treece GM, Gee AH. Independent measurement of femoral cortical thickness and cortical bone density using clinical CT. Med Image Anal. 2015;20:249–64. PubMed
Pakdel A, Robert N, Fialkov J, et al. Generalized method for computation of true thickness and x-ray intensity information in highly blurred sub-millimeter bone features in clinical CT images. Phys Med Biol. 2012;57:8099–116. PubMed
Valente G, Pitto L, Testi D, et al. Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification? PLoS One. 2014;9:e112625. doi: 10.1371/journal.pone.0112625. PubMed DOI PMC