A comparison of Direct sequencing, Pyrosequencing, High resolution melting analysis, TheraScreen DxS, and the K-ras StripAssay for detecting KRAS mutations in non small cell lung carcinomas

. 2012 Sep 20 ; 31 (1) : 79. [epub] 20120920

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22995035

BACKGROUND: It is mandatory to confirm the absence of mutations in the KRAS gene before treating metastatic colorectal cancers with epidermal growth factor receptor inhibitors, and similar regulations are being considered for non-small cell lung carcinomas (NSCLC) and other tumor types. Routine diagnosis of KRAS mutations in NSCLC is challenging because of compromised quantity and quality of biological material. Although there are several methods available for detecting mutations in KRAS, there is little comparative data regarding their analytical performance, economic merits, and workflow parameters. METHODS: We compared the specificity, sensitivity, cost, and working time of five methods using 131 frozen NSCLC tissue samples. We extracted genomic DNA from the samples and compared the performance of Sanger cycle sequencing, Pyrosequencing, High-resolution melting analysis (HRM), and the Conformité Européenne (CE)-marked TheraScreen DxS and K-ras StripAssay kits. RESULTS AND CONCLUSIONS: Our results demonstrate that TheraScreen DxS and the StripAssay, in that order, were most effective at diagnosing mutations in KRAS. However, there were still unsatisfactory disagreements between them for 6.1% of all samples tested. Despite this, our findings are likely to assist molecular biologists in making rational decisions when selecting a reliable, efficient, and cost-effective method for detecting KRAS mutations in heterogeneous clinical tumor samples.

Zobrazit více v PubMed

Jancik S, Drabek J, Radzioch D, Hajduch M. Clinical relevance of KRAS in human cancers. J Biomed Biotechnol. 2010;2010 150960. 1-13, Epub 2010 Jun 7. PubMed PMC

Lorigan P, Califano R, Faivre-Finn C, Howell A, Thatcher N. Lung cancer after treatment for breast cancer. Lancet Oncol. 2010;11:1184–1192. doi: 10.1016/S1470-2045(10)70056-5. PubMed DOI

Matesich SM, Shapiro CL. Second cancers after breast cancer treatment. Semin Oncol. 2003;30:740–748. doi: 10.1053/j.seminoncol.2003.08.022. PubMed DOI

Vasudevan KM, Garraway LA. AKT signaling in physiology and disease. Curr Top Microbiol Immunol. 2010;347:105–133. doi: 10.1007/82_2010_66. PubMed DOI

Hann CL, Brahmer JR. Who should receive epidermal growth factor receptor inhibitors for non-small cell lung cancer and when? Curr Treat Options Oncol. 2007;8:28–37. doi: 10.1007/s11864-007-0024-2. PubMed DOI

Lievre A, Bachet JB, Boige V, Cayre A, Le CD, Buc E. et al.KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol. 2008;26:374–379. doi: 10.1200/JCO.2007.12.5906. PubMed DOI

Patil DT, Fraser CR, Plesec TP. KRAS testing and its importance in colorectal cancer. Curr Oncol Rep. 2010;12:160–167. doi: 10.1007/s11912-010-0099-y. PubMed DOI

Allegra CJ, Jessup JM, Somerfield MR, Hamilton SR, Hammond EH, Hayes DF. et al.American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol. 2009;27:2091–2096. doi: 10.1200/JCO.2009.21.9170. PubMed DOI

Ludovini V, Bianconi F, Pistola L, Pistola V, Chiari R, Colella R. et al.Optimization of patient selection for EGFR-TKIs in advanced non-small cell lung cancer by combined analysis of KRAS, PIK3CA, MET, and non-sensitizing EGFR mutations. Cancer Chemother Pharmacol. 2012;69(5):1289–1299. doi: 10.1007/s00280-012-1829-7. PubMed DOI

Scoccianti C, Vesin A, Martel G, Olivier M, Brambilla E, Timsit JF. et al.Prognostic value of TP53, KRAS and EGFR mutations in nonsmall cell lung cancer: the EUELC cohort. Eur Respir J. 2012;40(1):177–184. doi: 10.1183/09031936.00097311. Epub 2012 Jan 20. PubMed DOI

van Krieken JH, Jung A, Kirchner T, Carneiro F, Seruca R, Bosman FT. et al.KRAS mutation testing for predicting response to anti-EGFR therapy for colorectal carcinoma: proposal for an European quality assurance program. Virchows Arch. 2008;453:417–431. doi: 10.1007/s00428-008-0665-y. PubMed DOI

Pettersson E, Lundeberg J, Ahmadian A. Generations of sequencing technologies. Genomics. 2009. pp. 105–111. PubMed

Wojcik P, Kulig J, Okon K, Zazula M, Mozdzioch I, Niepsuj A. et al.KRAS mutation profile in colorectal carcinoma and novel mutation–internal tandem duplication in KRAS. Pol J Pathol. 2008;59:93–96. PubMed

Hayes VM, Westra JL, Verlind E, Bleeker W, Plukker JT, Hofstra RMW. et al.New comprehensive denaturing-gradient-gel-electrophoresis assay for KRAS mutation detection applied to paraffin-embedded tumours. Genes Chromosomes Cancer. 2000;29:309–314. doi: 10.1002/1098-2264(2000)9999:9999<::AID-GCC1037>3.0.CO;2-F. PubMed DOI

Lee JS. Alternative dideoxy sequencing of double-stranded DNA by cyclic reactions using Taq polymerase. DNA Cell Biol. 1991;10:67–73. doi: 10.1089/dna.1991.10.67. PubMed DOI

Gharizadeh B, Nordstrom T, Ahmadian A, Ronaghi M, Nyren P. Long-read pyrosequencing using pure 2'-deoxyadenosine-5'-O'-(1-thiotriphosphate) Sp-isomer. Anal Biochem. 2002;301:82–90. doi: 10.1006/abio.2001.5494. PubMed DOI

Ronaghi M, Uhlen M, Nyren P. A sequencing method based on real-time pyrophosphate. Science. 1998;281:363–365. PubMed

Angulo B, Garcia-Garcia E, Martinez R, Suarez-Gauthier A, Conde E, Hidalgo M. et al.A commercial real-time PCR kit provides greater sensitivity than direct sequencing to detect KRAS mutations: a morphology-based approach in colorectal carcinoma. J Mol Diagn. 2010;12:292–299. doi: 10.2353/jmoldx.2010.090139. PubMed DOI PMC

Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ. High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem. 2003;49:853–860. doi: 10.1373/49.6.853. PubMed DOI

Whitehall V, Tran K, Umapathy A, Grieu F, Hewitt C, Evans TJ. et al.A multicenter blinded study to evaluate KRAS mutation testing methodologies in the clinical setting. J Mol Diagn. 2009;11:543–552. doi: 10.2353/jmoldx.2009.090057. PubMed DOI PMC

Gao J, Li YY, Sun PN, Shen L. Comparative analysis of dideoxy sequencing, the KRAS StripAssay and pyrosequencing for detection of KRAS mutation. World Journal of Gastroenterology. 2010;16:4858–4864. doi: 10.3748/wjg.v16.i38.4858. PubMed DOI PMC

Liu A. Laser capture microdissection in the tissue biorepository. J Biomol Tech. 2010;21:120–125. PubMed PMC

Zuo Z, Chen SS, Chandra PK, Galbincea JM, Soape M, Doan S. et al.Application of COLD-PCR for improved detection of KRAS mutations in clinical samples. Mod Pathol. 2009;22:1023–1031. doi: 10.1038/modpathol.2009.59. PubMed DOI

Beau-Faller M, Legrain M, Voegeli AC, Guerin E, Lavaux T, Ruppert AM. et al.Detection of K-Ras mutations in tumour samples of patients with non-small cell lung cancer using PNA-mediated PCR clamping. Br J Cancer. 2009;100:985–992. doi: 10.1038/sj.bjc.6604925. PubMed DOI PMC

Pennycuick A, Simpson T, Crawley D, Lal R, Santis G, Cane P. et al.Routine EGFR and KRAS Mutation analysis using COLD-PCR in non-small cell lung cancer. International Journal of Clinical Practice. 2012;66:748–752. doi: 10.1111/j.1742-1241.2012.02961.x. PubMed DOI

Pinto P, Rocha P, Veiga I, Guedes J, Pinheiro M, Peixoto A. et al.Comparison of methodologies for KRAS mutation detection in metastatic colorectal cancer. Cancer Genetics. 2011;204:439–446. doi: 10.1016/j.cancergen.2011.07.003. PubMed DOI

Tsiatis AC, Norris-Kirby A, Rich RG, Hafez MJ, Gocke CD, Eshleman JR. et al.Comparison of Sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS mutations: diagnostic and clinical implications. J Mol Diagn. 2010;12:425–432. doi: 10.2353/jmoldx.2010.090188. PubMed DOI PMC

Ogino S, Kawasaki T, Brahmandam M, Yan LY, Cantor M, Namgyal C. et al.Sensitive Sequencing method for KRAS mutation detection by pyrosequencing. J Mol Diagn. 2005;7:413–421. doi: 10.1016/S1525-1578(10)60571-5. PubMed DOI PMC

Chen G, Olson MT, O'Neill A, Norris A, Beierl K, Harada S. et al.A Virtual Pyrogram Generator to Resolve Complex Pyrosequencing Results. J Mol Diagn. 2012;14:149–159. doi: 10.1016/j.jmoldx.2011.12.001. PubMed DOI PMC

Shen S, Qin D. Pyrosequencing data analysis software: a useful tool for EGFR, KRAS, and BRAF mutation analysis. Diagn Pathol. 2012;7:56. doi: 10.1186/1746-1596-7-56. PubMed DOI PMC

Gonzalez-Bosquet J, Calcei J, Wei JS, Garcia-Closas M, Sherman ME, Hewitt S. et al.Detection of Somatic Mutations by High-Resolution DNA Melting (HRM) Analysis in Multiple Cancers. PLoS ONE. 2011;6(1):e14522. doi: 10.1371/journal.pone.0014522. PubMed DOI PMC

Do HD, Dobrovic A. Dramatic reduction of sequence artefacts from DNA isolated from formalin-fixed cancer biopsies by treatment with uracil-DNA glycosylase. Oncotarget. 2012;3:546–558. PubMed PMC

Weichert W, Schewe C, Lehmann A, Sers C, Denkert C, Budczies J. et al.KRAS genotyping of paraffin-embedded colorectal cancer tissue in routine diagnostics: comparison of methods and impact of histology. J Mol Diagn. 2010;12:35–42. doi: 10.2353/jmoldx.2010.090079. PubMed DOI PMC

Borras E, Jurado I, Hernan I, Gamundi MJ, Dias M, Marti I. et al.Clinical pharmacogenomic testing of KRAS, BRAF and EGFR mutations by high resolution melting analysis and ultra-deep pyrosequencing. BMC Cancer. 2011;11:406. doi: 10.1186/1471-2407-11-406. PubMed DOI PMC

Vossen RH, Aten E, Roos A, Den Dunnen JT. High-resolution melting analysis (HRMA): more than just sequence variant screening. Hum Mutat. 2009;30:860–866. doi: 10.1002/humu.21019. PubMed DOI

Erali M, Palais R, Wittwer C. SNP genotyping by unlabeled probe melting analysis. Methods Mol Biol. 2008;429:199–206. doi: 10.1007/978-1-60327-040-3_14. PubMed DOI

Heideman DA, Lurkin I, Doeleman M, Smit EF, Verheul HM, Meijer GA. et al.KRAS and BRAF mutation analysis in routine molecular diagnostics: comparison of three testing methods on formalin-fixed, paraffin-embedded tumor-derived DNA. J Mol Diagn. 2012;14:247–255. doi: 10.1016/j.jmoldx.2012.01.011. PubMed DOI

Riegman P, Dinjens W, Oomen M, Spatz A, Ratcliffe C, Knoxc K. et al.TVBaFrost 1: Uniting local Frozen Tumour Banks into a European Network: an overview. Eur J Cancer. 2006;42:2678–2683. doi: 10.1016/j.ejca.2006.04.031. PubMed DOI

Lim EH, Zhang SL, Li XL, Yap WS, Howe TC, Tan BP. et al.Using Whole genome amplification (WGA) of low-volume biopsies to assess the prognostic role of EGFR, KRAS, p53, and CMET mutations in advanced-stage Non-small cell lung cancer (NSCLC) J Thorac Oncol. 2009;4:12–21. doi: 10.1097/JTO.0b013e3181913e28. PubMed DOI

van Eijk R, van Puijenbroek M, Chhatta AR, Gupta N, Vossen RH, Lips EH. et al.Sensitive and specific KRAS somatic mutation analysis on whole-genome amplified DNA from archival tissues. J Mol Diagn. 2010;12:27–34. doi: 10.2353/jmoldx.2010.090028. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...