Avian haemosporidians in haematophagous insects in the Czech Republic
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Ceratopogonidae parasitology MeSH
- Culex parasitology MeSH
- Haemosporida classification genetics isolation & purification MeSH
- Insecta MeSH
- Polymerase Chain Reaction MeSH
- DNA, Protozoan genetics MeSH
- Birds parasitology MeSH
- Simuliidae parasitology MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- DNA, Protozoan MeSH
The degree to which avian haemosporidian parasites can exploit different vectors as a definitive host has ecological implications for their transmission and biogeography. Studies targeting haemosporidian parasites using precise molecular detection methods are almost lacking in Central Europe, however. Here, we utilized PCR-based molecular methods to detect avian haemosporidians in insect vectors in the Czech Republic. Nine lineages of parasites belonging to three genera, Haemoproteus, Plasmodium, and Leucocytozoon, were detected in pooled samples of insect individuals, of which three lineages had not yet been discovered in previous studies. All three Leucocytozoon lineages were found exclusively in black flies, while five Haemoproteus lineages were found in biting midges. The most abundant insect species Culicoides kibunensis harbored three Haemoproteus lineages, and the second-most numerous species Culicoides segnis even four. The positive mosquitoes of Culex pipiens complex hosted two parasite lineages, one Plasmodium and one Haemoproteus, the latter of which, however, could suggest the aberrant development of this parasite in an unusual invertebrate host. The co-occurrence of Haemoproteus ROFI1 and TURDUS2 lineages in both insects and birds at the same study plot suggests a transmission of these lineages during breeding season of birds.
See more in PubMed
J Parasitol. 2005 Aug;91(4):843-9 PubMed
Mol Ecol. 2007 Mar;16(6):1281-90 PubMed
J Evol Biol. 2009 Oct;22(10):2020-30 PubMed
J Parasitol. 1966 Aug;52(4):647-52 PubMed
Mol Ecol. 2010 Dec;19(24):5545-54 PubMed
Int J Parasitol. 2009 Jan;39(2):257-66 PubMed
Mol Ecol. 2008 Oct;17(20):4545-55 PubMed
Mol Ecol. 2011 Aug;20(15):3084-6 PubMed
Med Vet Entomol. 2009 Sep;23(3):277-80 PubMed
J Med Entomol. 1988 Jan;25(1):39-44 PubMed
J Wildl Dis. 2003 Jan;39(1):170-8 PubMed
J Parasitol. 1953 Feb;39(1):28-32 PubMed
J Anim Ecol. 2011 Sep;80(5):938-46 PubMed
Parasitol Res. 2009 Jan;104(2):251-5 PubMed
J Anim Ecol. 2008 May;77(3):540-8 PubMed
J Parasitol. 2010 Feb;96(1):144-51 PubMed
Mol Ecol. 2007 Aug;16(15):3263-73 PubMed
PLoS One. 2011;6(7):e21905 PubMed
J Parasitol. 2008 Dec;94(6):1385-94 PubMed
J Parasitol. 2007 Aug;93(4):889-96 PubMed
J Parasitol. 2006 Dec;92(6):1319-24 PubMed
Parasitology. 2007 Apr;134(Pt 4):483-90 PubMed
J Med Entomol. 1990 Jan;27(1):68-71 PubMed
Mol Ecol. 2008 May;17(10):2552-61 PubMed
Parasitol Res. 2009 Sep;105(3):629-33 PubMed
Parasitology. 2006 Dec;133(Pt 6):685-92 PubMed
Mol Ecol. 2008 Mar;17(6):1605-13 PubMed
Parasitol Res. 2009 Oct;105(5):1351-7 PubMed
Mol Ecol. 2011 Mar;20(5):1049-61 PubMed
Mol Ecol Resour. 2009 Sep;9(5):1353-8 PubMed
J Parasitol. 2004 Aug;90(4):797-802 PubMed
Mol Ecol. 2011 Mar;20(5):1062-76 PubMed
Mol Ecol. 2011 Aug;20(15):3275-87 PubMed
J Wildl Dis. 2011 Oct;47(4):849-59 PubMed
Med Vet Entomol. 2011 Mar;25(1):104-8 PubMed
Mol Phylogenet Evol. 2008 Apr;47(1):261-73 PubMed
PLoS One. 2012;7(4):e34964 PubMed
J Parasitol. 2002 Oct;88(5):864-8 PubMed
A literature review on the role of Culicoides in the transmission of avian blood parasites in Europe
Blood parasites in northern goshawk (Accipiter gentilis) with an emphasis to Leucocytozoon toddi