Candidate target genes for the Saccharomyces cerevisiae transcription factor, Yap2
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Alcohol Oxidoreductases biosynthesis genetics MeSH
- Chromatin Immunoprecipitation MeSH
- DNA, Fungal genetics MeSH
- Genes, Fungal * MeSH
- Oxidoreductases biosynthesis genetics MeSH
- Promoter Regions, Genetic MeSH
- Proteomics methods MeSH
- Gene Expression Regulation, Fungal * MeSH
- Saccharomyces cerevisiae Proteins biosynthesis genetics metabolism MeSH
- Saccharomyces cerevisiae genetics metabolism MeSH
- Transcription Factors metabolism MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Alcohol Oxidoreductases MeSH
- CAD1 protein, S cerevisiae MeSH Browser
- DNA, Fungal MeSH
- Oxidoreductases MeSH
- Saccharomyces cerevisiae Proteins MeSH
- Transcription Factors MeSH
- YDL124W protein, S cerevisiae MeSH Browser
- YNL134C protein, S cerevisiae MeSH Browser
In Saccharomyces cerevisiae, the Yap family of basic leucine zipper (bZip) proteins contains eight members. The Yap family proteins are implicated in a variety of stress responses; among these proteins, Yap1 acts as a major regulator of oxidative stress responses. However, the functional roles of the remaining Yap family members are poorly understood. To elucidate the function of Yap2, we mined candidate target genes of Yap2 by proteomic analysis. Among the identified genes, FRM2 was previously identified as a target gene of Yap2, which confirmed the validity of our screening method. YNL134C and YDL124W were also identified as candidate Yap2 target genes. These genes were upregulated in strains overexpressing Yap2 and possess Yap2 target sequences in their promoter regions. Furthermore, chromatin immunoprecipitation assays showed that YNL134C and YDL124W have Yap2 binding motif. These data will help to elucidate the functional role of Yap2.
See more in PubMed
Nature. 2003 Oct 16;425(6959):686-91 PubMed
Electrophoresis. 1999 Mar;20(3):601-5 PubMed
J Biol Chem. 2004 Sep 10;279(37):38495-502 PubMed
FEBS J. 2005 Jun;272(11):2639-47 PubMed
Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):2934-9 PubMed
Mol Biol Cell. 1999 Apr;10(4):1147-61 PubMed
Nucleic Acids Res. 2000 Jan 1;28(1):77-80 PubMed
Yeast. 2010 May;27(5):245-58 PubMed
FEBS Lett. 2004 Jun 1;567(1):80-5 PubMed
J Biol Chem. 2000 Feb 25;275(8):5431-40 PubMed
Mol Biol Cell. 2002 May;13(5):1608-14 PubMed
Bioinformatics. 1999 Jul-Aug;15(7-8):607-11 PubMed
Nucleic Acids Res. 2005 Jan 1;33(Database issue):D374-7 PubMed
Nucleic Acids Res. 2003 Jul 1;31(13):3576-9 PubMed
Biochim Biophys Acta. 2007 Mar;1773(3):321-9 PubMed
Mol Cell Biol. 1997 Dec;17(12):6982-93 PubMed
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D446-51 PubMed
FEBS Lett. 2007 Jan 23;581(2):187-95 PubMed
Toxicol Pathol. 2002 Nov-Dec;30(6):620-50 PubMed
Anal Chem. 1996 Mar 1;68(5):850-8 PubMed
Yeast. 2007 Mar;24(3):145-54 PubMed
Genetics. 1997 Oct;147(2):435-50 PubMed
Biosci Biotechnol Biochem. 2004 Nov;68(11):2306-12 PubMed
Mech Ageing Dev. 2002 Nov;123(12):1597-604 PubMed