Clinical implication of centrosome amplification and expression of centrosomal functional genes in multiple myeloma
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23522059
PubMed Central
PMC3615957
DOI
10.1186/1479-5876-11-77
PII: 1479-5876-11-77
Knihovny.cz E-zdroje
- MeSH
- centrozom ultrastruktura MeSH
- dospělí MeSH
- hybridizace in situ fluorescenční MeSH
- lidé středního věku MeSH
- lidé MeSH
- mitóza MeSH
- mnohočetný myelom farmakoterapie genetika MeSH
- oprava DNA MeSH
- polymerázová řetězová reakce MeSH
- prognóza MeSH
- proliferace buněk MeSH
- recidiva MeSH
- regulace genové exprese u nádorů * MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- separace buněk MeSH
- stanovení celkové genové exprese MeSH
- syndekan-1 metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- syndekan-1 MeSH
BACKGROUND: Multiple myeloma (MM) is a low proliferative tumor of postgerminal center plasma cell (PC). Centrosome amplification (CA) is supposed to be one of the mechanisms leading to chromosomal instability. Also, CA is associated with deregulation of cell cycle, mitosis, DNA repair and proliferation. The aim of our study was to evaluate the prognostic significance and possible role of CA in pathogenesis and analysis of mitotic genes as mitotic disruption markers. DESIGN AND METHODS: A total of 173 patients were evaluated for this study. CD138+ cells were separated by MACS. Immunofluorescent labeling of centrin was used for evaluation of centrosome amplification in PCs. Interphase FISH with cytoplasmic immunoglobulin light chain staining (cIg FISH) and qRT-PCR were performed on PCs. RESULTS: Based on the immunofluorescent staining results, all patients were divided into two groups: CA positive (38.2%) and CA negative (61.8%). Among the newly diagnosed patients, worse overall survival was indicated in the CA negative group (44/74) in comparison to the CA positive group (30/74) (P = 0.019). Gene expression was significantly down-regulated in the CA positive group in comparison to CA negative in the following genes: AURKB, PLK4, TUBG1 (P < 0.05). Gene expression was significantly down-regulated in newly diagnosed in comparison to relapsed patients in the following genes: AURKA, AURKB, CCNB1, CCNB2, CETN2, HMMR, PLK4, PCNT, and TACC3 (P < 0.05). CONCLUSIONS: Our findings indicate better prognosis for CA positive newly diagnosed patients. Considering revealed clinical and gene expression heterogeneity between CA negative and CA positive patients, there is a possibility to characterize centrosome amplification as a notable event in multiple myeloma pathogenesis.
Zobrazit více v PubMed
Hinchcliffe EH, Sluder G. “It takes two to tango”: understanding how centrosome duplication is regulated throughout the cell cycle. Genes Dev. 2001;15:1167–1181. doi: 10.1101/gad.894001. PubMed DOI
Kramer A, Neben K, Ho AD. Centrosome replication, genomic instability and cancer. Leukemia. 2002;16:767–775. doi: 10.1038/sj.leu.2402454. PubMed DOI
Anderhub SJ, Kramer A, Maier B. Centrosome amplification in tumorigenesis. Cancer Lett. 2012;322(1):8–17. doi: 10.1016/j.canlet.2012.02.006. PubMed DOI
Nigg EA. Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer. 2002;2:815–825. PubMed
Ried T, Heselmeyer-Haddad K, Blegen H, Schrock E, Auer G. Genomic changes defining the genesis, progression, and malignancy potential in solid human tumors: a phenotype/genotype correlation. Genes Chromosomes Cancer. 1999;25:195–204. doi: 10.1002/(SICI)1098-2264(199907)25:3<195::AID-GCC1>3.0.CO;2-8. PubMed DOI
Mantel C, Braun SE, Reid S, Henegariu O, Liu L, Hangoc G, Broxmeyer HE. p21(cip-1/waf-1) deficiency causes deformed nuclear architecture, centriole overduplication, polyploidy, and relaxed microtubule damage checkpoints in human hematopoietic cells. Blood. 1999;93:1390–1398. PubMed
Hollander MC, Sheikh MS, Bulavin DV, Lundgren K, Augeri-Henmueller L, Shehee R, Molinaro TA, Kim KE, Tolosa E, Ashwell JD. Genomic instability in Gadd45a-deficient mice. Nat Genet. 1999;23:176–184. doi: 10.1038/13802. PubMed DOI
Smith L, Liu SJ, Goodrich L, Jacobson D, Degnin C, Bentley N, Carr A, Flaggs G, Keegan K, Hoekstra M, Thayer MJ. Duplication of ATR inhibits MyoD, induces aneuploidy and eliminates radiation-induced G1 arrest. Nat Genet. 1998;19:39–46. doi: 10.1038/ng0598-39. PubMed DOI
Pihan GA, Purohit A, Wallace J, Knecht H, Woda B, Quesenberry P, Doxsey SJ. Centrosome defects and genetic instability in malignant tumors. Cancer Res. 1998;58:3974–3985. PubMed
Lingle WL, Salisbury JL. Altered centrosome structure is associated with abnormal mitoses in human breast tumors. Am J Pathol. 1999;155:1941–1951. doi: 10.1016/S0002-9440(10)65513-7. PubMed DOI PMC
Sato N, Mizumoto K, Nakamura M, Maehara N, Minamishima YA, Nishio S, Nagai E, Tanaka M. Correlation between centrosome abnormalities and chromosomal instability in human pancreatic cancer cells. Cancer Genet Cytogenet. 2001;126:13–19. doi: 10.1016/S0165-4608(00)00384-8. PubMed DOI
Duensing S, Munger K. Centrosome abnormalities, genomic instability and carcinogenic progression. Biochim Biophys Acta. 2001;1471:M81–M88. PubMed
Skyldberg B, Fujioka K, Hellstrom AC, Sylven L, Moberger B, Auer G. Human papillomavirus infection, centrosome aberration, and genetic stability in cervical lesions. Mod Pathol. 2001;14:279–284. doi: 10.1038/modpathol.3880303. PubMed DOI
Lingle WL, Barrett SL, Negron VC, D’Assoro AB, Boeneman K, Liu W, Whitehead CM, Reynolds C, Salisbury JL. Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci U S A. 2002;99:1978–1983. doi: 10.1073/pnas.032479999. PubMed DOI PMC
Shono M, Sato N, Mizumoto K, Maehara N, Nakamura M, Nagai E, Tanaka M. Stepwise progression of centrosome defects associated with local tumor growth and metastatic process of human pancreatic carcinoma cells transplanted orthotopically into nude mice. Lab Invest. 2001;81:945–952. doi: 10.1038/labinvest.3780306. PubMed DOI
Lange BM. Integration of the centrosome in cell cycle control, stress response and signal transduction pathways. Curr Opin Cell Biol. 2002;14:35–43. doi: 10.1016/S0955-0674(01)00291-5. PubMed DOI
Hinchcliffe EH, Miller FJ, Cham M, Khodjakov A, Sluder G. Requirement of a centrosomal activity for cell cycle progression through G1 into S phase. Science. 2001;291:1547–1550. doi: 10.1126/science.1056866. PubMed DOI
Pines J. Four-dimensional control of the cell cycle. Nat Cell Biol. 1999;1:E73–E79. doi: 10.1038/11041. PubMed DOI
Rieder CL, Faruki S, Khodjakov A. The centrosome in vertebrates: more than a microtubule-organizing center. Trends Cell Biol. 2001;11:413–419. doi: 10.1016/S0962-8924(01)02085-2. PubMed DOI
Sibon OC, Kelkar A, Lemstra W, Theurkauf WE. DNA-replication/DNA-damage-dependent centrosome inactivation in Drosophila embryos. Nat Cell Biol. 2000;2:90–95. doi: 10.1038/35000041. PubMed DOI
Meraldi P, Nigg EA. The centrosome cycle. FEBS Lett. 2002;521:9–13. doi: 10.1016/S0014-5793(02)02865-X. PubMed DOI
Sugihara E, Kanai M, Saito S, Nitta T, Toyoshima H, Nakayama K, Nakayama KI, Fukasawa K, Schwab M, Saya H, Miwa M. Suppression of centrosome amplification after DNA damage depends on p27 accumulation. Cancer Res. 2006;66:4020–4029. doi: 10.1158/0008-5472.CAN-05-3250. PubMed DOI
Hose D, Reme T, Hielscher T, Moreaux J, Meissner T, Seckinger A, Benner A, Shaughnessy JD, Barlogie B, Zhou YM. Proliferation is a central independent prognostic factor and target for personalized and risk-adapted treatment in multiple myeloma (vol 96, pg 87, 2010) Haematol-Hematol J. 2011;96:484–489. PubMed PMC
Witzig TE, Timm M, Larson D, Therneau T, Greipp PR. Measurement of apoptosis and proliferation of bone marrow plasma cells in patients with plasma cell proliferative disorders. Br J Haematol. 1999;104:131–137. doi: 10.1046/j.1365-2141.1999.01136.x. PubMed DOI
Boccadoro M, Gavarotti P, Fossati G, Pileri A, Marmont F, Neretto G, Gallamini A, Volta C, Tribalto M, Testa MG. Low plasma cell 3(H) thymidine incorporation in monoclonal gammopathy of undetermined significance (MGUS), smouldering myeloma and remission phase myeloma: a reliable indicator of patients not requiring therapy. Br J Haematol. 1984;58:689–696. doi: 10.1111/j.1365-2141.1984.tb06116.x. PubMed DOI
Greipp PR, Lust JA, O’Fallon WM, Katzmann JA, Witzig TE, Kyle RA. Plasma cell labeling index and beta 2-microglobulin predict survival independent of thymidine kinase and C-reactive protein in multiple myeloma. Blood. 1993;81:3382–3387. PubMed
Greipp PR, Katzmann JA, O’Fallon WM, Kyle RA. Value of beta 2-microglobulin level and plasma cell labeling indices as prognostic factors in patients with newly diagnosed myeloma. Blood. 1988;72:219–223. PubMed
San Miguel JF, Garcia-Sanz R, Gonzalez M, Moro MJ, Hernandez JM, Ortega F, Borrego D, Carnero M, Casanova F, Jimenez R. A new staging system for multiple myeloma based on the number of S-phase plasma cells. Blood. 1995;85:448–455. PubMed
Steensma DP, Gertz MA, Greipp PR, Kyle RA, Lacy MQ, Lust JA, Offord JR, Plevak MF, Therneau TM, Witzig TE. A high bone marrow plasma cell labeling index in stable plateau-phase multiple myeloma is a marker for early disease progression and death. Blood. 2001;97:2522–2523. doi: 10.1182/blood.V97.8.2522. PubMed DOI
Minarik J, Scudla V, Ordeltova M, Pika T, Bacovsky J, Steinbach M, Kumar V, Van Ness B. Combined measurement of plasma cell proliferative and apoptotic index in multiple myeloma defines patients with good and poor prognosis. Leuk Res. 2011;35:44–48. doi: 10.1016/j.leukres.2010.04.015. PubMed DOI
Chng WJ, Ahmann GJ, Henderson K, Santana-Davila R, Greipp PR, Gertz MA, Lacy MQ, Dispenzieri A, Kumar S, Rajkumar SV. Clinical implication of centrosome amplification in plasma cell neoplasm. Blood. 2006;107:3669–3675. doi: 10.1182/blood-2005-09-3810. PubMed DOI PMC
Dementyeva E, Nemec P, Kryukov F, Raja KRM, Smetana J, Zaoralova R, Greslikova H, Kupska R, Kuglik P, Hajek R. Centrosome amplification as a possible marker of mitotic disruptions and cellular carcinogenesis in multiple myeloma. Leukemia Res. 2010;34:1007–1011. doi: 10.1016/j.leukres.2009.12.018. PubMed DOI
Chng WJ, Braggio E, Mulligan G, Bryant B, Remstein E, Valdez R, Dogan A, Fonseca R. The centrosome index is a powerful prognostic marker in myeloma and identifies a cohort of patients that might benefit from aurora kinase inhibition. Blood. 2008;111:1603–1609. PubMed
Kryukov F, Dementyeva E, Kuglik P, Hajek R. Visualization of numerical centrosomal abnormalities by immunofluorescent staining. Klinicka onkologie: casopis Ceske a Slovenske onkologicke spolecnosti. 2011;24(Suppl):S49–S52. PubMed
Nemec P, Zemanova Z, Kuglik P, Michalova K, Tajtlova J, Kaisarova P, Oltova A, Filkova H, Holzerova M, Balcarkova J. Complex karyotype and translocation t(4;14) define patients with high-risk newly diagnosed multiple myeloma: results of CMG2002 trial. Leuk Lymphoma. 2011;53(5):920–927. PubMed
Sevcikova S, Nemec P, Pour L, Hajek R. Genomics in multiple myeloma research. Klinicka onkologie: casopis Ceske a Slovenske onkologicke spolecnosti. 2011;24(Suppl):S34–S38. PubMed
Delaval B, Birnbaum D. A cell cycle hypothesis of cooperative oncogenesis (Review) Int J Oncol. 2007;30:1051–1058. PubMed
Sato N, Mizumoto K, Nakamura M, Ueno H, Minamishima YA, Farber JL, Tanaka M. A possible role for centrosome overduplication in radiation-induced cell death. Oncogene. 2000;19:5281–5290. doi: 10.1038/sj.onc.1203902. PubMed DOI
Fukasawa K. Oncogenes and tumour suppressors take on centrosomes. Nat Rev Cancer. 2007;7:911–924. doi: 10.1038/nrc2249. PubMed DOI
Centrosome associated genes pattern for risk sub-stratification in multiple myeloma