The effect of avian blood on Leishmania development in Phlebotomus duboscqi
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24059328
PubMed Central
PMC3766276
DOI
10.1186/1756-3305-6-254
PII: 1756-3305-6-254
Knihovny.cz E-zdroje
- MeSH
- gastrointestinální trakt parazitologie MeSH
- králíci MeSH
- krev metabolismus MeSH
- krmivo pro zvířata MeSH
- kur domácí MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- Leishmania major genetika růst a vývoj MeSH
- mikroskopie MeSH
- myši MeSH
- Phlebotomus parazitologie MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: The development of pathogens transmitted by haematophagous invertebrate vectors is closely connected with the digestion of bloodmeals and is thus affected by midgut enzymatic activity. Some studies have demonstrated that avian blood inhibits Leishmania major infection in the Old World vector Phlebotomus papatasi; however, this effect has never been observed in the New World vectors of the genus Lutzomyia infected by other Leishmania species. Therefore, our study was focused on the effect of chicken blood on bloodmeal digestion and the development of Leishmania major in its natural vector Phlebotomus duboscqi, i.e. in a vector-parasite combination where the effect of blood is assumed. In addition, we tested the effect of avian blood on midgut trypsin activity and the influence of repeated feedings on the susceptibility of sand flies to Leishmania infection. METHODS: Phlebotomus duboscqi females were infected by rabbit blood containing L. major and either before or after the infection fed on chickens or mice. The individual guts were checked microscopically for presence and localization of Leishmania, parasite numbers were detected by Q-PCR. In addition, midgut trypsin activity was studied. RESULTS: Sand fly females fed on chicken blood had significantly lower midgut trypsin activity and delayed egg development compared to those fed on rabbits. On the other hand, there was no effect detected of avian blood on parasite development within the sand fly gut: similar infection rates and parasite loads were observed in P. duboscqi females infected by L. major and fed on chickens or mouse one or six days later. Similarly, previous blood feeding of sand flies on chickens or mice did not show any differences in subsequent Leishmania infections, and there was equal susceptibility of P. duboscqi to L. major infection during the first and second bloodmeals. CONCLUSION: In spite of the fact that avian blood affects trypsin activity and the oocyte development of sand flies, no effect of chicken blood was observed on the development of L. major in P. duboscqi. Our study unambiguously shows that sand fly feeding on avian hosts is not harmful to Leishmania parasites within the sand fly midgut.
Zobrazit více v PubMed
Kamhawi S. Phlebotomine sand flies and Leishmania parasites: friends or foes? Trends Parasitol. 2006;22:439–445. PubMed
Dostalova A, Volf P. Leishmania development in sand flies: parasite-vector interactions overview. Parasit Vectors. 2012;5:276. PubMed PMC
Ward RD. The colonization of Lutzomyia flaviscutellata (Diptera: Psychodidae), a vector of Leishmania mexicana amazonensis in Brazil. J Med Entomol. 1977;14:469–476. PubMed
Ready PD. Factors affecting egg production of laboratory-bred Lutzomyia longipalpis (Diptera: Psychodidae) J Med Entomol. 1979;16:413–423. PubMed
Benito-De Martin MI, Gracia-Salinas MJ, Molina-Moreno R, Ferrer-Dufol M, Lucientes-Curdi J. Influence of the nature of the ingested blood on the gonotrophic parameters of Phlebotomus perniciosus under laboratory conditions. Parasite. 1994;1:409–411. PubMed
Hanafi HA, Kanour WW, Beavers GM, Tetreault GE. Colonization and bionomics of the sandfly Phlebotomus kazeruni from Sinai, Egypt. Med Vet Entomol. 1999;13:295–298. PubMed
Noguera P, Rondon M, Nieves E. Effect of blood source on the survival and fecundity of the sandfly Lutzomyia ovallesi Ortiz (Diptera: Psychodidae), vector of Leishmania. Biomedica. 2006;26(Suppl 1):57–63. PubMed
Briegel H, Lea AO. Relationship between protein and proteolytic activity in the midgut of mosquitoes. J Insect Physiol. 1975;21:1597–1604. PubMed
Felix CR, Betschart B, Billingsley PF, Freyvogel TA. Post-feeding induction of trypsin in the midgut of Aedes aegypti L (Diptera, Culicidae) is separable into 2 cellular-phase. Insect Biochem. 1991;21:197–203.
Adler S. Factors determining the behaviour of Leishmania sp. in sandflies. Harefuah. 1938;14:1–6.
Schlein Y, Romano H. Leishmania major and L. donovani: effects on proteolytic enzymes of Phlebotomus papatasi (Diptera, Psychodidae) Exp Parasitol. 1986;62:376–380. PubMed
Borovsky D, Schlein Y. Trypsin and chymotrypsin-like enzymes of the sandfly Phlebotomus papatasi infected with Leishmania and their possible role in vector competence. Med Vet Entomol. 1987;1:235–242. PubMed
Pimenta PF, Modi GB, Pereira ST, Shahabuddin M, Sacks DL. A novel role for the peritrophic matrix in protecting Leishmania from the hydrolytic activities of the sand fly midgut. Parasitology. 1997;115:359–369. PubMed
Adler S. Leishmania. Adv Parasitol. 1964;2:35–96. PubMed
Schlein Y, Warburg A, Schnur LF, Shlomai J. Vector compatibility of Phlebotomus papatasi dependent on differentially induced digestion. Acta Trop. 1983;40:65–70. PubMed
Nieves E, Pimenta PF. Influence of vertebrate blood meals on the development of Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis in the sand fly Lutzomyia migonei (Diptera: Psychodidae) Am J Trop Med Hyg. 2002;67:640–647. PubMed
Sant’Anna MRV, Nascimento A, Alexander B, Dilger E, Cavalcante RR, Diaz-Albiter HM, Bates PA, Dillon RJ. Chicken blood provides a suitable meal for the sand fly Lutzomyia longipalpis and does not inhibit Leishmania development in the gut. Parasit Vectors. 2010;3:3. PubMed PMC
Volf P, Volfova V. Establishment and maintenance of sand fly colonies. J Vector Ecol. 2011;36(Suppl 1):S1–S9. PubMed
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. PubMed
Hlavacova J, Votypka J, Volf P. The effect of temperature on Leishmania development in sand flies. J Med Entomol. 2013;50:935–938. PubMed
Myskova J, Votypka J, Volf P. Leishmania in sand flies: comparison of quantitative polymerase chain reaction with other techniques to determine the intensity of infection. J Med Entomol. 2008;45:133–138. PubMed
Mary C, Faraut F, Lascombe L, Dumon H. Quantification of Leishmania infantum DNA by real-time PCR assay with high sensitivity. J Clin Microbiol. 2004;42:5249–5255. PubMed PMC
Schlein Y, Jacobson RL. Some sandfly food is a Leishmania poison. Bull Soc Vector Ecol. 1994;19:82–86.
Sadlova J, Reishig J, Volf P. Prediuresis in female Phlebotomus sandflies (Diptera : Psychodidae) Eur J Entomol. 1998;95:643–647.
Sadlova J, Volf P. Occurrence of Leishmania major in sandfly urine. Parasitology. 1999;118:455–460. PubMed
Dillon RJ, Lane RP. Bloodmeal digestion in the midgut of Phlebotomus papatasi and Phlebotomus langeroni. Med Vet Entomol. 1993;7:225–232. PubMed
Volf P, Killick-Kendrick R. Post-engorgement dynamics of haemagglutination activity in the midgut of phlebotomine sandflies. Med Vet Entomol. 1996;10:247–250. PubMed
Telleria EL, de Araujo AP, Secundino NF, d’Avila-Levy CM, Traub-Cseko YM. Trypsin-like serine proteases in Lutzomyia longipalpis - expression, activity and possible modulation by Leishmania infantum chagasi. PLoS One. 2010;5:e10697. PubMed PMC
Sant’Anna MRV, Diaz-Albiter H, Mubaraki M, Dillon RJ, Bates PA. Inhibition of trypsin expression in Lutzomyia longipalpis using RNAi enhances the survival of Leishmania. Parasit Vectors. 2009;2:62. PubMed PMC
Dostalova A, Votypka J, Favreau AJ, Barbian KD, Volf P, Valenzuela JG, Jochim RC. The midgut transcriptome of Phlebotomus (Larroussius) perniciosus, a vector of Leishmania infantum: comparison of sugar fed and blood fed sand flies. BMC Genomics. 2011;12:223. PubMed PMC
Lawyer PG, Ngumbi PM, Anjili CO, Odongo SO, Mebrahtu YB, Githure JI, Koech D, Roberts CR. Development of Leishmania major in Phlebotomus duboscqi and Sergentomyia schwetzi (Diptera: Psychodidae) Am J Trop Med Hyg. 1990;43:31–43. PubMed
Cihakova J, Volf P. Development of different Leishmania major strains in the vector sandflies Phlebotomus papatasi and P. duboscqi. Ann Trop Med Parasitol. 1997;91:267–279. PubMed
Sadlova J, Volf P. Peritrophic matrix of Phlebotomus duboscqi and its kinetics during Leishmania major development. Cell Tissue Res. 2009;337:313–325. PubMed PMC
Welburn SC, Maudlin I. The nature of the teneral state in Glossina and its role in the acquisition of trypanosome infection in tsetse. Ann Trop Med Parasitol. 1992;86:529–536. PubMed
Walshe DP, Lehane MJ, Haines LR. Post eclosion age predicts the prevalence of midgut trypanosome infections in Glossina. PLoS One. 2011;6:e26984. PubMed PMC
Kubi C, Van den Abbeele J, De Deken R, Marcotty T, Dorny P, Van den Bossche P. The effect of starvation on the susceptibility of teneral and non-teneral tsetse flies to trypanosome infection. Med Vet Entomol. 2006;20:388–392. PubMed
Lehane MJ. Peritrophic matrix structure and function. Annu Rev Entomol. 1997;42:525–550. PubMed