Results of combined radiotherapy and hormonal treatment of prostate cancer patients with initial PSA value >40 ng/ml
Status PubMed-not-MEDLINE Jazyk angličtina Země Polsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
24377004
PubMed Central
PMC3863225
DOI
10.1016/j.rpor.2012.01.006
PII: S1507-1367(12)00007-7
Knihovny.cz E-zdroje
- Klíčová slova
- High risk, PSA, Prostate cancer, Radiotherapy,
- Publikační typ
- časopisecké články MeSH
AIM: To evaluate the outcome of prostate cancer patients with initial PSA value >40 ng/ml. BACKGROUND: The outcome of prostate cancer patients with very high initial PSA value is not known and patients are frequently treated with palliative intent. We analyzed the outcome of radical combined hormonal treatment and radiotherapy in prostate cancer patients with initial PSA value >40 ng/ml. METHODS: Between January 2003 and December 2007 we treated, with curative intent, 56 patients with non-metastatic prostate cancer and initial PSA value >40 ng/ml. The treatment consisted of two months of neoadjuvant hormonal treatment (LHRH analog), radical radiotherapy (68-78 Gy, conformal technique) and an optional two-year adjuvant hormonal treatment. RESULTS: The median time of follow up was 61 months. 5-Year overall survival was 90%. 5-Year biochemical disease free survival was 62%. T stage, Gleason score, PSA value, and radiotherapy dose did not significantly influence the outcome. Late genitourinal and gastrointestinal toxicity was acceptable. CONCLUSION: Radical treatment in combination with hormonal treatment and radiotherapy can be recommended for this subgroup of prostate cancer patients with good performance status and life expectancy.
Zobrazit více v PubMed
Caire A.A., Sun L., Lack B.D. Predicting non-organ-confined prostate cancer in men diagnosed after 2000. Prostate Cancer Prostatic Dis. 2010;13:248–251. PubMed
Partin A.W., Kattan M.W., Subong E.N. Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. JAMA. 1997;277:1445–1451. PubMed
Gallina A., Jeldres C., Chun F.K. Prediction of pathological stage is inaccurate in men with PSA values above 20 ng/mL. Eur Urol. 2007;52:1374–1380. PubMed
Anim J.T., Kehinde E.O., Prasad A. Relationship between serum prostate specific antigen and the pattern of inflammation in both benign and malignant prostatic disease in Middle Eastern men International. Urol Nephrol. 2006;38:27–32. PubMed
Schirrmeister H., Guhlmann A., Elsner K. Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med. 1999;40:1623–1629. PubMed
Even-Sapir E., Metser U., Mishani E. The detection of bone metastases in patients with high risk prostate cancer: 99mTc MDP planar bone scintigraphy, single and multi field of view SPECT, 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med. 2006;47:287–297. PubMed
Eschmann S.M., Pfannenberg A.C., Rieger A. Comparison of 11C-choline PET/CT and whole body-MRI for staging of prostate cancer. Nuklearmedizin. 2007;46:161–168. PubMed
Scattoni V., Picchio M., Suardi N. Detection of lymph-node metastases with integrated [11C]choline PET/CT in patients with PSA failure after radical retropubic prostatectomy: results confirmed by open pelvic-retroperitoneal lymphadenectomy. Eur Radiol. 2007;52:423–429. PubMed
Widmark A., Klepp O., Solberg A. Endocrine treatment, with or without radiotherapy, in locally advanced prostate cancer (SPCG-7/SFUO-3): an open randomised phase III trial. Lancet. 2009;373:301–308. PubMed
Bolla M., Collette L., Blank L. Long-term results with immediate androgen suppression and external irradiation in patients with locally advanced prostate cancer (an EORTC study): a phase III randomised trial. Lancet. 2002;360:103–106. PubMed
Bolla M., van Tienhoven G., de Reijke T.M. Concomitant and adjuvant androgen deprivation (ADT) with external beam irradiation (RT) for locally advanced prostate cancer: 6 months versus 3 years ADT: results of the randomized EORTC Phase III trial 22,961. J Clin Oncol. 2007;25:5014.
Gallina A., Jeldres C., Chun F. Prediction of pathological stage is inaccurate in men with PSA values above 20 ng/mL. Eur Urol. 2007;52:1374–1380. PubMed
Gleave M.E., Coupland D., Drachenberg D. Ability of serum prostate-specific antigen levels to predict normal bone scans in patients with newly diagnosed prostate cancer. Urology. 1996;47:708–712. PubMed
Jung K., Lein M., Stephan C. Comparison of 10 serum bone turnover markers in prostate carcinoma patients with bone metastatic spread: diagnostic and prognostic implications. Int J Cancer. 2004;111:783–791. PubMed
Kamiya N., Suzuki H., Yano M. Implications of serum bone turnover markers in prostate cancer patients with bone metastasis. Urology. 2010;75:1446–1451. PubMed
Kataoka A., Yuasa T., Kageyama S. Diagnosis of bone metastasis in men with prostate cancer by measurement of serum ICTP in combination with alkali phosphatase and prostate-specific antigen. Clin Oncol. 2006;18(August (6)):480–484. PubMed
Hovels A.M., Heesakkers R.A., Adang E.M. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol. 2008;63:387–395. PubMed
Testa C., Schiavina R., Lodi R. Prostate cancer: sextant localization with MR imaging, MR spectroscopy, and 11C-choline PET-CT. Radiology. 2007;244:797–806. PubMed
Yamaguchi T., Lee J., Uemura H. Prostate cancer: a comparative study of 11C-choline PET and MR imaging combined with proton MR spectroscopy. Eur J Nucl Med Mol Imaging. 2005;32:742–748. PubMed
Bauman G., Belhocine T., Kovacs M., Ward A., Beheshti M., Rachinsky I. (18)F-fluorocholine for prostate cancer imaging: a systematic review of the literature. Prostate Cancer Prostatic Dis. 2011 August 16 [Epub ahead of print] PubMed
Beheshti M., Imamovic L., Broinger G. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology. 2010;254:925–933. PubMed
Beheshti M., Vali R., Waldenberger P. The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT. Mol Imaging Biol. 2009;11:446–454. PubMed
Roach M., 3rd, Bae K., Speight J. Short-term neoadjuvant androgen deprivation therapy and external-beam radiotherapy for locally advanced prostate cancer: long-term results of rtog 8610. J Clin Oncol. 2008;26:585–591. PubMed
D’Amico A.V., Chen M.H., Renshaw A.A., Loffredo M., Kantoff P.W. Androgen suppression and radiation vs radiation alone for prostate cancer: a randomized trial. JAMA. 2008;299:289–295. PubMed
Denham J.W., Steigler A., Lamb D.S. Short-term androgen deprivation and radiotherapy for locally advanced prostate cancer: results from the Trans-Tasman Radiation Oncology Group 96.01 randomised controlled trial. Lancet Oncol. 2005;6:841–850. PubMed
Alexander A., Crook J., Jones S. Is biochemical response more important than duration of neoadjuvant hormone therapy before radiotherapy for clinically localized prostate cancer? An analysis of the 3- versus 8-month randomized trial. Int J Radiat Oncol Biol Phys. 2010;76:23–30. PubMed
Roach M., III, DeSilvio M., Valicenti R. Whole-pelvis, “mini-pelvis,” or prostate-only external beam radiotherapy after neoadjuvant and concurrent hormonal therapy in patients treated in the Radiation Therapy Oncology Group 9413 trial. Int J Radiat Oncol Biol Phys. 2006;3:647–653. PubMed
Lawton C.A., DeSilvio M., Roach M., III An update of the phase III trial comparing whole pelvic to prostate only radiotherapy and neoadjuvant to adjuvant total androgen suppression: updated analysis of RTOG 94-13, with emphasis on unexpected hormone/radiation interactions. Int J Radiat Oncol Biol Phys. 2007;69:646–655. PubMed PMC
Dirix P., Haustermans K., Junius S., Withers R., Oyen R., Van Poppel H. The role of whole pelvic radiotherapy in locally advanced prostate cancer. Radiother Oncol. 2006;79:1–14. PubMed
Cheung R., Tucker S., Lee A. Dose–response characteristics of low- and intermediate risk prostate cancer treated with external beam radiotherapy. Int J Radiat Oncol Biol Phys. 2005;61:993–1002. PubMed
Pollack A., Zagars G., Starkschall G. Prostate Cancer radiation dose response: results of the M.D. Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys. 2002;53:1097–1105. PubMed
Sharma N.K., Li T., Chen D.Y., Pollack A., Horwitz E.M., Buyyounouski M.K. Intensity-modulated radiotherapy reduces gastrointestinal toxicity in patients treated with androgen deprivation therapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2010 November 2 [Epub ahead of print] PubMed
Dolezel M., Odrazka K., Vaculikova M. Dose escalation in prostate radiotherapy up to 82 Gy using simultaneous integrated boost: direct comparison of acute and late toxicity with 3D-CRT 74 Gy and IMRT 78 Gy. Strahlenther Onkol. 2010;186(April (4)):197–202. PubMed
Ceylan C., Kucuk N., Bas Ayata H., Guden M., Engin K. Dosimetric and physical comparison of IMRT and CyberKnife plans in the treatment of localized prostate cancer. Rep Pract Oncol Radiother. 2010;15(6):181–189. PubMed PMC
Ashman J.B., Zelefsky M.J., Hunt M.S., Leibel S.A., Fuks Z. Whole pelvic radiotherapy for prostate cancer using 3D conformal and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2005;63:765–771. PubMed
De Meerleer G., Fonteyne V.H., Vakaet L. Intensity-modulated radiation therapy for prostate cancer: late morbidity and results on biochemical kontrol. Radiother Oncol. 2007;82:160–166. PubMed
Bolla M., Gonzalez D., Warde P. Improved survival in patients with locally advanced prostate cancer treated with radiotherapy and goserelin. N Engl J Med. 1997;337:295–300. PubMed
Bajon T., Piotrowski T., Antczak A. Comparison of dose volume histograms for supine and prone position in patients irradiated for prostate cancer—a preliminary study. Rep Pract Oncol Radiother. 2011;16:65–70. PubMed PMC
Tyrrella C.H., Payneb H., Seec W.A. Bicalutamide (‘Casodex’) 150 mg as adjuvant to radiotherapy in patients with localised or locally advanced prostate cancer: results from the randomised Early Prostate Cancer Programme Group. Radiother Oncol. 2005;76:4–10. PubMed
Keating N.L., O’Malley A.J., Smith M.R. Diabetes and cardiovascular disease during androgen deprivation therapy for prostate cancer. J Clin Oncol. 2006;24:4448–4456. PubMed
Saigal C.S., Gore J.L., Krupski T.L., Hanley J., Schonlau M., Litwin M.S. Androgen deprivation therapy increases cardiovascular morbidity in men with prostate cancer. Cancer. 2007;110:1493–1500. PubMed
Alibhai S.M., Duong-Hua M., Sutradhar R. Impact of androgen deprivation therapy on cardiovascular disease and diabetes. J Clin Oncol. 2009;27:3452–3458. PubMed PMC
Alexander A.S., Mydin A., Jones S.O. Extreme-risk prostate adenocarcinoma with prostate-specific antigen (PSA) > 40 ng/ml: prognostic significance of the preradiation PSA nadir. Int J Radiat Oncol Biol Phys. 2011 January 27 [Epub ahead of print] PubMed