Comparison of UTCI with other thermal indices in the assessment of heat and cold effects on cardiovascular mortality in the Czech Republic
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
24413706
PubMed Central
PMC3924484
DOI
10.3390/ijerph110100952
PII: ijerph110100952
Knihovny.cz E-zdroje
- MeSH
- kardiovaskulární nemoci etiologie mortalita MeSH
- lidé MeSH
- lineární modely MeSH
- nízká teplota škodlivé účinky MeSH
- vysoká teplota škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
We compare the recently developed Universal Thermal Climate Index (UTCI) with other thermal indices in analysing heat- and cold-related effects on cardiovascular (CVD) mortality in two different (urban and rural) regions in the Czech Republic during the 16-year period from 1994-2009. Excess mortality is represented by the number of deaths above expected daily values, the latter being adjusted for long-term changes, annual and weekly cycles, and epidemics of influenza/acute respiratory infections. Air temperature, UTCI, Apparent Temperature (AT) and Physiologically Equivalent Temperature (PET) are applied to identify days with heat and cold stress. We found similar heat effects on CVD mortality for air temperature and the examined thermal indices. Responses of CVD mortality to cold effects as characterised by different indices were much more varied. Particularly important is the finding that air temperature provides a weak cold effect in comparison with the thermal indices in both regions, so its application--still widespread in epidemiological studies--may underestimate the magnitude of cold-related mortality. These findings are important when possible climate change effects on heat- and cold-related mortality are estimated. AT and PET appear to be more universal predictors of heat- and cold- related mortality than UTCI when both urban and rural environments are of concern. UTCI tends to select windy rather than freezing days in winter, though these show little effect on mortality in the urban population. By contrast, significant cold-related mortality in the rural region if UTCI is used shows potential for UTCI to become a useful tool in cold exposure assessments.
Zobrazit více v PubMed
Cheng X., Su H. Effects of climatic temperature stress on cardiovascular diseases. Eur. J. Intern. Med. 2010;21:164–167. doi: 10.1016/j.ejim.2010.03.001. PubMed DOI
Basu R. High ambient temperature and mortality: A review of epidemiologic studies from 2001 to 2008. Environ. Health. 2009;8 doi: 10.1186/1476-069X-8-40. PubMed DOI PMC
McGregor G.R. Human biometeorology. Prog. Phys. Geogr. 2011;36:93–109. doi: 10.1177/0309133311417942. DOI
Jendritzky G., de Dear R., Havenith G. UTCI—Why another thermal index? Int. J. Biometeorol. 2012;56:421–428. doi: 10.1007/s00484-011-0513-7. PubMed DOI
Kántor N., Unger J. The most problematic variable in the course of human-biometeorological comfort assessment—The mean radiant temperature. Cent. Eur. J. Geosci. 2011;3:90–100. doi: 10.2478/s13533-011-0010-x. DOI
Mayer H., Höppe P. Thermal comfort of man in different urban environments. Theor. Appl. Climatol. 1987;38:43–49. doi: 10.1007/BF00866252. DOI
Höppe P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999;43:71–75. doi: 10.1007/s004840050118. PubMed DOI
Matzarakis A, Mayer H., Iziomon M.G. Applications of a universal thermal index: Physiological equivalent temperature. Int. J. Biometeorol. 1999;43:76–84. doi: 10.1007/s004840050119. PubMed DOI
Jendritzky G., Staiger H., Bucher K., Graetz A., Laschewski G. The Perceived Temperature: The Method of the Deutscher Wetterdienst for the Assessment of Cold Stress and Heat Load for the Human Body; Proceedings of Internet Workshop on Windchill, Environment Canada; Fredericton, New Brunswick, Canada. 3–7 April 2000.
Staiger H., Laschewski G., Grätz A. The perceived temperature—A versatile index for the assessment of the human thermal environment. Part A: Scientific basics. Int. J. Biometeorol. 2012;56:165–76. doi: 10.1007/s00484-011-0409-6. PubMed DOI
Laschewski G., Jendritzky G. Effects of the thermal environment on human health: An investigation of 30 years of daily mortality data from SW Germany. Clim. Res. 2002;21:91–103. doi: 10.3354/cr021091. DOI
Matzarakis A., Muthers S., Koch E. Human biometeorological evaluation of heat-related mortality in Vienna. Theor. Appl. Climatol. 2010;105:1–10. doi: 10.1007/s00704-010-0372-x. DOI
Burkart K., Schneider A., Breitner S., Khan M.H., Krämer A., Endlicher W. The effect of atmospheric thermal conditions and urban thermal pollution on all-cause and cardiovascular mortality in Bangladesh. Environ. Pollut. 2011;159:2035–2043. doi: 10.1016/j.envpol.2011.02.005. PubMed DOI
Gabriel K.M.A., Endlicher W.R. Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany. Environ. Pollut. 2011;159:2044–2050. doi: 10.1016/j.envpol.2011.01.016. PubMed DOI
Kim Y.-M., Kim S., Cheong H.-K., Kim E.-H. Comparison of temperature indexes for the impact assessment of heat stress on heat-related mortality. Environ. Health Toxicol. 2011;26 doi: 10.5620/eht.2011.26.e2011009. PubMed DOI PMC
Nastos P.T., Matzarakis A. The effect of air temperature and human thermal indices on mortality in Athens, Greece. Theor. Appl. Climatol. 2011;108:591–599. doi: 10.1007/s00704-011-0555-0. DOI
Fiala D., Havenith G., Bröde P., Kampmann B., Jendritzky G. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int. J. Biometeorol. 2012;56:429–441. doi: 10.1007/s00484-011-0424-7. PubMed DOI
UTCI—Universal Thermal Climate Index. [(accessed on 10 June 2013)]. Available online: http://www.utci.org/
Havenith G., Fiala D., Błazejczyk K., Richards M., Bröde P., Holmér I., Rintamaki H., Benshabat Y., Jendritzky G. The UTCI-clothing model. Int. J. Biometeorol. 2012;56:461–470. doi: 10.1007/s00484-011-0451-4. PubMed DOI
Błażejczyk K., Epstein Y., Jendritzky G., Staiger H., Tinz B. Comparison of UTCI to selected thermal indices. Int. J. Biometeorol. 2012;56:515–535. doi: 10.1007/s00484-011-0453-2. PubMed DOI PMC
Urban A., Davídkovová H., Kyselý J. Heat- and cold-stress effects on cardiovascular mortality and morbidity among urban and rural populations in the Czech Republic. Int. J. Biometeorol. 2013 doi: 10.1007/s00484-013-0693-4. PubMed DOI
Spiezia V. Measuring Regional Economies. Statistics Brief OECD, No. 6, 2003. [(accessed on 14 August 2013)]. Available online: http://www.oecd.org/dataoecd/2/15/15918996.pdf.
Blatecká K. The Basic Characteristics of Czech Rural Areas. [(accessed on 14 August 2013)]. (in Czech) Available online: http://is.muni.cz/th/137827/esf_m/Diplomova_prace.pdf.
CZSO—Czech Statistical Office Statistical Yearbook 2011. [(accessed on 20 August 2012)]. Available online: http://www.czso.cz/csu/2011edicniplan.nsf/publ/0001-11-2010.
Whitman S., Good G., Donoghue E.R., Benbow N. Public health biefs mortality in Chicago attributed to the July 1995 heat wave. Public Health. 1997;87:1515–1518. PubMed PMC
Smoyer K.E., Rainham D.G., Hewko J.N. Heat-stress-related mortality in five cities in Southern Ontario: 1980–1996. Int. J. Biometeorol. 2000;44:190–197. doi: 10.1007/s004840000070. PubMed DOI
Kynčl J., Procházka B., Goddard N.L., Havlíčková M., Částková J., Otavová M., Kříž B. A study of excess mortality during influenza epidemics in the Czech Republic, 1982–2000. Eur. J. Epidemiol. 2005;20:365–371. doi: 10.1007/s10654-005-1067-y. PubMed DOI
Kyselý J., Pokorná L., Kynčl J., Kříž B. Excess cardiovascular mortality associated with cold spells in the Czech Republic. BMC Public Health. 2009;9 doi: 10.1186/1471-2458-9-19. PubMed DOI PMC
Matzarakis A., Rutz F., Mayer H. Modelling radiation fluxes in simple and complex environments—Application of the RayMan model. Int. J. Biometeorol. 2007;51:323–334. doi: 10.1007/s00484-006-0061-8. PubMed DOI
Matzarakis A., Rutz F., Mayer H. Modelling radiation fluxes in simple and complex environments—Basics of the RayMan model. Int. J. Biometeorol. 2010;54:131–139. doi: 10.1007/s00484-009-0261-0. PubMed DOI
Bañuelos-Ruedas F., Camacho C.Á. Methodologies Used in the Extrapolation of Wind Speed Data at Different Heights and Its Impact in the Wind Energy Resource Assessment in a Region. In: Suvire G.O., editor. Wind Farm—Technical Regulations, Potential Estimation and Siting Assessment. InTech; Rijeka, Croatia: 2011.
Bröde P., Fiala D., Błażejczyk K., Holmér I., Jendritzky G., Kampmann B., Tinz B., Havenith G. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI) Int. J. Biometeorol. 2012;56:481–94. doi: 10.1007/s00484-011-0454-1. PubMed DOI
Steadman R.G. A universal scale of apparent temperature. J. Appl. Meteorol. Climatol. 1984;23:1674–1687.
Steadman R.G. Norms of apparent temperature in Australia. Aust. Meteorol. Mag. 1994;43:1–16.
Australian Government, Bureau of Meterology Thermal Comfort observations. [(accessed on 5 November 2013)]. Available online: http://www.bom.gov.au/info/thermal_stress.
Hajat S., Kovats R.S., Lachowycz K. Heat-related and cold-related deaths in England and Wales: Who is at risk? Occup Environ. Med. 2007;64:93–100. PubMed PMC
Medina-Ramón M., Schwartz J. Temperature, temperature extremes, and mortality: A study of acclimatization and effect modification in 50 United States cities. Occup. Environ. Med. 2007:827–834. PubMed PMC
Gómez-Acebo I., Dierssen-Sotos T., Llorca J. Effect of cold temperatures on mortality in Cantabria (Northern Spain): A case-crossover study. Public Health. 2010;124:398–403. doi: 10.1016/j.puhe.2010.03.025. PubMed DOI
Schoenberg B.S. Calculating confidence intervals for rates and ratios. Neuroepidemiology. 1983;2:257–265. doi: 10.1159/000110529. DOI
Novák M. Use of the UTCI in the Czech Republic. Geogr. Pol. 2013;86:21–28. doi: 10.7163/GPol.2013.3. DOI
Spreitzhofer G. Synoptic classification of severe snowstorms over Austria. Met. Z. 1999;8:3–15.
Kalkstein S., Davis R. Weather and human mortality: An evaluation of demographic and interregional responses in the united states. Ann. Assn. Amer Geogr. 1989;79:44–64. doi: 10.1111/j.1467-8306.1989.tb00249.x. DOI
Baker-Blocker A. Winter weather and cardiovascular mortality in Minneapolis-St. Paul. Amer. J. Public Health. 1982;72:261–265. doi: 10.2105/AJPH.72.3.261. PubMed DOI PMC
Southern D.A., Knudtson M.L., Ghali W.A. Myocardial infarction on snow days: Incidence, procedure use and outcomes. Can. J. Cardiol. 2006;22:59–61. doi: 10.1016/S0828-282X(06)70240-9. PubMed DOI PMC
Vaneckova P., Neville G., Tippett V., Aitken P., FitzGerald G., Tong S. Do biometeorological indices improve modeling outcomes of heat-related mortality? J. Appl. Meteorol. Climatol. 2011;50:1165–1176. doi: 10.1175/2011JAMC2632.1. DOI
Ye X., Wolff R., Yu W., Vaneckova P., Pan X., Tong S. Ambient temperature and morbidity: a review of epidemiological evidence. Environ. Health Perspect. 2012;120:19–28. doi: 10.1289/ehp.1204c19. PubMed DOI PMC
Gosling S.N., Lowe J.A., McGregor G.R., Pelling M., Malamud B.D. Associations between elevated atmospheric temperature and human mortality: A critical review of the literature. Climate Change. 2008;92:299–341.
Markandya A., Chiabai A. Valuing climate change impacts on human health: Empirical evidence from the literature. Int. J. Environ. Res. Public Health. 2009;6:759–786. doi: 10.3390/ijerph6020759. PubMed DOI PMC
Christidis N., Donaldson G.C., Stott P.A. Causes for the recent changes in cold- and heat-related mortality in England and Wales. Climate Change. 2010;102:539–553. doi: 10.1007/s10584-009-9774-0. DOI
Mercer J.B. Cold, an underrated risk factor for health. Environ. Res. 2002;92:8–13. doi: 10.1016/S0013-9351(02)00009-9. PubMed DOI
Kenney W.L., Munce T.A. Invited review: Aging and human temperature regulation. J. Appl. Physiol. 2003;95:2598–2603. PubMed
Weihs P., Staiger H., Tinz B., Batchvarova E., Rieder H., Vuilleumier L., Maturilli M., Jendritzky G. The uncertainty of UTCI due to uncertainties in the determination of radiation fluxes derived from measured and observed meteorological data. Int. J. Biometeorol. 2012;56:537–555. doi: 10.1007/s00484-011-0416-7. PubMed DOI
Iñiguez C., Ballester F., Ferrandiz J., Pérez-Hoyos S., Sáez M., López A. Relation between temperature and mortality in thirteen Spanish cities. Int. J. Environ. Res. Public Health. 2010;7:3196–3210. doi: 10.3390/ijerph7083196. PubMed DOI PMC
Hattis D., Ogneva-Himmelberger Y., Ratick S. The spatial variability of heat-related mortality in Massachusetts. Appl. Geogr. 2012;33:45–52. doi: 10.1016/j.apgeog.2011.07.008. DOI
Burkart K., Khan M.H., Krämer A., Breitner S., Schneider A., Endlicher W.R. Seasonal variations of all-cause and cause-specific mortality by age, gender, and socioeconomic condition in urban and rural areas of Bangladesh. Int. J. Equity Health. 2011;10 doi: 10.1186/1475-9276-10-32. PubMed DOI PMC
Carder M., McNamee R., Beverland I., Elton R., Cohen G.R., Boyd J., Agius R.M. The lagged effect of cold temperature and wind chill on cardiorespiratory mortality in Scotland. Occup. Environ. Med. 2005;62:702–710. doi: 10.1136/oem.2004.016394. PubMed DOI PMC
Wichmann J., Andersen Z.J., Ketzel M., Ellermann T., Loft S. Apparent temperature and cause-specific mortality in Copenhagen, Denmark: A case-crossover analysis. Int. J. Environ. Res. Public Health. 2011;8:3712–3727. doi: 10.3390/ijerph8093712. PubMed DOI PMC
Yu W., Mengersen K., Wang X., Ye X., Guo Y., Pan X., Tong S. Daily average temperature and mortality among the elderly: A meta-analysis and systematic review of epidemiological evidence. Int. J. Biometeorol. 2012;56:569–581. doi: 10.1007/s00484-011-0497-3. PubMed DOI
Shitzer A., Tikuisis P. Advances, shortcomings, and recommendations for wind chill estimation. Int. J. Biometeorol. 2012;56:495–503. doi: 10.1007/s00484-010-0362-9. PubMed DOI
Gender inequalities in heat-related mortality in the Czech Republic
Spatial Patterns of Heat-Related Cardiovascular Mortality in the Czech Republic