Deliberate attenuation of chikungunya virus by adaptation to heparan sulfate-dependent infectivity: a model for rational arboviral vaccine design
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural
Grantová podpora
AI083383
NIAID NIH HHS - United States
U54 AI081680
NIAID NIH HHS - United States
R01 AI095436
NIAID NIH HHS - United States
AI057156
NIAID NIH HHS - United States
T32 AI060525
NIAID NIH HHS - United States
R01 AI083383
NIAID NIH HHS - United States
U54 AI057156
NIAID NIH HHS - United States
T32 EB009403
NIBIB NIH HHS - United States
AI081680
NIAID NIH HHS - United States
PubMed
24587470
PubMed Central
PMC3930508
DOI
10.1371/journal.pntd.0002719
PII: PNTD-D-13-01670
Knihovny.cz E-zdroje
- MeSH
- atenuované vakcíny genetika imunologie MeSH
- biologická adaptace účinky léků genetika MeSH
- cytokiny metabolismus MeSH
- heparitinsulfát farmakologie MeSH
- molekulární modely MeSH
- mutace genetika MeSH
- myši MeSH
- neutralizující protilátky imunologie MeSH
- proteiny virového obalu genetika MeSH
- statická elektřina MeSH
- substituce aminokyselin genetika MeSH
- virové vakcíny genetika imunologie MeSH
- virulence genetika MeSH
- virus chikungunya * účinky léků genetika imunologie patogenita MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- atenuované vakcíny MeSH
- cytokiny MeSH
- heparitinsulfát MeSH
- neutralizující protilátky MeSH
- proteiny virového obalu MeSH
- virové vakcíny MeSH
Mosquito-borne chikungunya virus (CHIKV) is a positive-sense, single-stranded RNA virus from the genus Alphavirus, family Togaviridae, which causes fever, rash and severe persistent polyarthralgia in humans. Since there are currently no FDA licensed vaccines or antiviral therapies for CHIKV, the development of vaccine candidates is of critical importance. Historically, live-attenuated vaccines (LAVs) for protection against arthropod-borne viruses have been created by blind cell culture passage leading to attenuation of disease, while maintaining immunogenicity. Attenuation may occur via multiple mechanisms. However, all examined arbovirus LAVs have in common the acquisition of positively charged amino acid substitutions in cell-surface attachment proteins that render virus infection partially dependent upon heparan sulfate (HS), a ubiquitously expressed sulfated polysaccharide, and appear to attenuate by retarding dissemination of virus particles in vivo. We previously reported that, like other wild-type Old World alphaviruses, CHIKV strain, La Réunion, (CHIKV-LR), does not depend upon HS for infectivity. To deliberately identify CHIKV attachment protein mutations that could be combined with other attenuating processes in a LAV candidate, we passaged CHIKV-LR on evolutionarily divergent cell-types. A panel of single amino acid substitutions was identified in the E2 glycoprotein of passaged virus populations that were predicted to increase electrostatic potential. Each of these substitutions was made in the CHIKV-LR cDNA clone and comparisons of the mutant viruses revealed surface exposure of the mutated residue on the spike and sensitivity to competition with the HS analog, heparin, to be primary correlates of attenuation in vivo. Furthermore, we have identified a mutation at E2 position 79 as a promising candidate for inclusion in a CHIKV LAV.
Zobrazit více v PubMed
Higgs S (2006) The 2005–2006 Chikungunya epidemic in the Indian Ocean. Vector Borne Zoonotic Dis 6: 115–116. PubMed
Enserink M (2006) Infectious diseases. Massive outbreak draws fresh attention to little-known virus. Science 311: 1085. PubMed
Thiberville SD, Moyen N, Dupuis-Maguiraga L, Antoine N, Gould EA, et al. (2013) Chikungunya fever: Epidemiology, clinical syndrome, pathogenesis and therapy. Antiviral Res 99: 345–370. PubMed PMC
Powers AM (2011) Genomic evolution and phenotypic distinctions of Chikungunya viruses causing the Indian Ocean outbreak. Exp Biol Med (Maywood) 236: 909–914. PubMed
Burt FJ, Rolph MS, Rulli NE, Mahalingam S, Heise MT (2012) Chikungunya: a re-emerging virus. Lancet 379: 662–671. PubMed
Mirzaian E, Durham MJ, Hess K, Goad JA (2010) Mosquito-borne illnesses in travelers: a review of risk and prevention. Pharmacotherapy 30: 1031–1043. PubMed
Ruiz-Moreno D, Vargas IS, Olson KE, Harrington LC (2012) Modeling dynamic introduction of Chikungunya virus in the United States. PLoS Negl Trop Dis 6: e1918. PubMed PMC
Hoke CH Jr, Pace-Templeton J, Pittman P, Malinoski FJ, Gibbs P, et al. (2012) US Military contributions to the global response to pandemic chikungunya. Vaccine 30: 6713–6720. PubMed
Edelman R, Tacket CO, Wasserman SS, Bodison SA, Perry JG, et al. (2000) Phase II safety and immunogenicity study of live chikungunya virus vaccine TSI-GSD-218. Am J Trop Med Hyg 62: 681–685. PubMed
Weaver SC, Osorio JE, Livengood JA, Chen R, Stinchcomb DT (2012) Chikungunya virus and prospects for a vaccine. Expert Rev Vaccines 11: 1087–1101. PubMed PMC
Jose J, Snyder JE, Kuhn RJ (2009) A structural and functional perspective of alphavirus replication and assembly. Future Microbiol 4: 837–856. PubMed PMC
Khan AH, Morita K, Parquet Md Mdel C, Hasebe F, Mathenge EG, et al. (2002) Complete nucleotide sequence of chikungunya virus and evidence for an internal polyadenylation site. J Gen Virol 83: 3075–3084. PubMed
Vanlandingham DL, Tsetsarkin K, Hong C, Klingler K, McElroy KL, et al. (2005) Development and characterization of a double subgenomic chikungunya virus infectious clone to express heterologous genes in Aedes aegypti mosquitoes. Insect Biochem Mol Biol 35: 1162–1170. PubMed
Voss JE, Vaney MC, Duquerroy S, Vonrhein C, Girard-Blanc C, et al. (2010) Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature 468: 709–712. PubMed
Bernard E, Solignat M, Gay B, Chazal N, Higgs S, et al. (2010) Endocytosis of chikungunya virus into mammalian cells: role of clathrin and early endosomal compartments. PLoS One 5: e11479. PubMed PMC
Klimstra WB, Nangle EM, Smith MS, Yurochko AD, Ryman KD (2003) DC-SIGN and L-SIGN can act as attachment receptors for alphaviruses and distinguish between mosquito cell- and mammalian cell-derived viruses. J Virol 77: 12022–12032. PubMed PMC
Klimstra WB, Ryman KD, Johnston RE (1998) Adaptation of Sindbis virus to BHK cells selects for use of heparan sulfate as an attachment receptor. J Virol 72: 7357–7366. PubMed PMC
Klimstra WB, Heidner HW, Johnston RE (1999) The furin protease cleavage recognition sequence of Sindbis virus PE2 can mediate virion attachment to cell surface heparan sulfate. J Virol 73: 6299–6306. PubMed PMC
Byrnes AP, Griffin DE (1998) Binding of Sindbis virus to cell surface heparan sulfate. J Virol 72: 7349–7356. PubMed PMC
Byrnes AP, Griffin DE (2000) Large-plaque mutants of Sindbis virus show reduced binding to heparan sulfate, heightened viremia, and slower clearance from the circulation. J Virol 74: 644–651. PubMed PMC
Ryman KD, Gardner CL, Burke CW, Meier KC, Thompson JM, et al. (2007) Heparan sulfate binding can contribute to the neurovirulence of neuroadapted and nonneuroadapted Sindbis viruses. J Virol 81: 3563–3573. PubMed PMC
Heil ML, Albee A, Strauss JH, Kuhn RJ (2001) An amino acid substitution in the coding region of the E2 glycoprotein adapts Ross River virus to utilize heparan sulfate as an attachment moiety. J Virol 75: 6303–6309. PubMed PMC
Smit JM, Waarts BL, Kimata K, Klimstra WB, Bittman R, et al. (2002) Adaptation of alphaviruses to heparan sulfate: interaction of Sindbis and Semliki forest viruses with liposomes containing lipid-conjugated heparin. J Virol 76: 10128–10137. PubMed PMC
Klimstra WB, Ryman KD, Bernard KA, Nguyen KB, Biron CA, et al. (1999) Infection of neonatal mice with sindbis virus results in a systemic inflammatory response syndrome. J Virol 73: 10387–10398. PubMed PMC
Tsetsarkin K, Higgs S, McGee CE, De Lamballerie X, Charrel RN, et al. (2006) Infectious clones of Chikungunya virus (La Reunion isolate) for vector competence studies. Vector Borne Zoonotic Dis 6: 325–337. PubMed
Parola P, de Lamballerie X, Jourdan J, Rovery C, Vaillant V, et al. (2006) Novel chikungunya virus variant in travelers returning from Indian Ocean islands. Emerg Infect Dis 12: 1493–1499. PubMed PMC
Gardner CL, Burke CW, Higgs ST, Klimstra WB, Ryman KD (2012) Interferon-alpha/beta deficiency greatly exacerbates arthritogenic disease in mice infected with wild-type chikungunya virus but not with the cell culture-adapted live-attenuated 181/25 vaccine candidate. Virology 425: 103–112. PubMed PMC
Gorchakov R, Wang E, Leal G, Forrester NL, Plante K, et al. (2012) Attenuation of Chikungunya virus vaccine strain 181/clone 25 is determined by two amino acid substitutions in the E2 envelope glycoprotein. J Virol 86: 6084–6096. PubMed PMC
Gardner CL, Ebel GD, Ryman KD, Klimstra WB (2011) Heparan sulfate binding by natural eastern equine encephalitis viruses promotes neurovirulence. Proc Natl Acad Sci U S A 108: 16026–16031. PubMed PMC
Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M (1995) Evaluation of comparative protein modeling by MODELLER. Proteins 23: 318–326. PubMed
Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25: 1157–1174. PubMed
Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, et al. (2007) PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res 35: W522–525. PubMed PMC
Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98: 10037–10041. PubMed PMC
Schuffenecker I, Iteman I, Michault A, Murri S, Frangeul L, et al. (2006) Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med 3: e263. PubMed PMC
Partidos CD, Weger J, Brewoo J, Seymour R, Borland EM, et al. (2011) Probing the attenuation and protective efficacy of a candidate chikungunya virus vaccine in mice with compromised interferon (IFN) signaling. Vaccine 29: 3067–3073. PubMed PMC
Henrik Gad H, Paulous S, Belarbi E, Diancourt L, Drosten C, et al. (2012) The E2-E166K substitution restores Chikungunya virus growth in OAS3 expressing cells by acting on viral entry. Virology 434: 27–37. PubMed
Esko JD, Stewart TE, Taylor WH (1985) Animal cell mutants defective in glycosaminoglycan biosynthesis. Proc Natl Acad Sci U S A 82: 3197–3201. PubMed PMC
Gardner CL, Choi-Nurvitadhi J, Sun C, Bayer A, Hritz J, et al. (2013) Natural variation in the heparan sulfate binding domain of the eastern equine encephalitis virus E2 glycoprotein alters interactions with cell surfaces and virulence in mice. J Virol PubMed PMC
Gardner J, Anraku I, Le TT, Larcher T, Major L, et al. (2010) Chikungunya virus arthritis in adult wild-type mice. J Virol 84: 8021–8032. PubMed PMC
Morrison TE, Oko L, Montgomery SA, Whitmore AC, Lotstein AR, et al. (2011) A mouse model of chikungunya virus-induced musculoskeletal inflammatory disease: evidence of arthritis, tenosynovitis, myositis, and persistence. Am J Pathol 178: 32–40. PubMed PMC
Rulli NE, Rolph MS, Srikiatkhachorn A, Anantapreecha S, Guglielmotti A, et al. (2011) Protection from arthritis and myositis in a mouse model of acute chikungunya virus disease by bindarit, an inhibitor of monocyte chemotactic protein-1 synthesis. J Infect Dis 204: 1026–1030. PubMed
Kelvin AA, Banner D, Silvi G, Moro ML, Spataro N, et al. (2011) Inflammatory cytokine expression is associated with chikungunya virus resolution and symptom severity. PLoS Negl Trop Dis 5: e1279. PubMed PMC
Wauquier N, Becquart P, Nkoghe D, Padilla C, Ndjoyi-Mbiguino A, et al. (2011) The acute phase of Chikungunya virus infection in humans is associated with strong innate immunity and T CD8 cell activation. J Infect Dis 204: 115–123. PubMed PMC
Chow A, Her Z, Ong EK, Chen JM, Dimatatac F, et al. (2011) Persistent arthralgia induced by Chikungunya virus infection is associated with interleukin-6 and granulocyte macrophage colony-stimulating factor. J Infect Dis 203: 149–157. PubMed PMC
Hoarau JJ, Jaffar Bandjee MC, Krejbich Trotot P, Das T, Li-Pat-Yuen G, et al. (2010) Persistent chronic inflammation and infection by Chikungunya arthritogenic alphavirus in spite of a robust host immune response. J Immunol 184: 5914–5927. PubMed
Noret M, Herrero L, Rulli N, Rolph M, Smith PN, et al. (2012) Interleukin 6, RANKL, and osteoprotegerin expression by chikungunya virus-infected human osteoblasts. J Infect Dis 206 455–457: 457–459. PubMed
Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ (1992) Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res 7: 683–692. PubMed
Bernard KA, Klimstra WB, Johnston RE (2000) Mutations in the E2 glycoprotein of Venezuelan equine encephalitis virus confer heparan sulfate interaction, low morbidity, and rapid clearance from blood of mice. Virology 276: 93–103. PubMed
Tripathi CK, Banga J, Mishra V (2012) Microbial heparin/heparan sulphate lyases: potential and applications. Appl Microbiol Biotechnol 94: 307–321. PubMed
Chu H, Das SC, Fuchs JF, Suresh M, Weaver SC, et al. (2013) Deciphering the protective role of adaptive immunity to CHIKV/IRES a novel candidate vaccine against Chikungunya in the A129 mouse model. Vaccine 31: 3353–3360. PubMed PMC
Lum FM, Teo TH, Lee WW, Kam YW, Renia L, et al. (2013) An essential role of antibodies in the control of Chikungunya virus infection. J Immunol 190: 6295–6302. PubMed PMC
Gardner CL, Ryman KD (2010) Yellow fever: a reemerging threat. Clin Lab Med 30: 237–260. PubMed PMC
Roukens AH, Visser LG (2008) Yellow fever vaccine: past, present and future. Expert Opin Biol Ther 8: 1787–1795. PubMed
Lee E, Lobigs M (2008) E protein domain III determinants of yellow fever virus 17D vaccine strain enhance binding to glycosaminoglycans, impede virus spread, and attenuate virulence. J Virol 82: 6024–6033. PubMed PMC
McKinney RW, Berge TO, Sawyer WD, Tigertt WD, Crozier D (1963) Use of an Attenuated Strain of Venezuelan Equine Encephalomyelitis Virus for Immunization in Man. Am J Trop Med Hyg 12: 597–603. PubMed
Maccarana M, Sakura Y, Tawada A, Yoshida K, Lindahl U (1996) Domain structure of heparan sulfates from bovine organs. J Biol Chem 271: 17804–17810. PubMed
Ledin J, Staatz W, Li JP, Gotte M, Selleck S, et al. (2004) Heparan sulfate structure in mice with genetically modified heparan sulfate production. J Biol Chem 279: 42732–42741. PubMed
Kusche-Gullberg M, Nybakken K, Perrimon N, Lindahl U (2012) Drosophila heparan sulfate, a novel design. J Biol Chem 287: 21950–21956. PubMed PMC
Pejler G, Danielsson A, Bjork I, Lindahl U, Nader HB, et al. (1987) Structure and antithrombin-binding properties of heparin isolated from the clams Anomalocardia brasiliana and Tivela mactroides. J Biol Chem 262: 11413–11421. PubMed
Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, et al. (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68: 729–777. PubMed
Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446: 1030–1037. PubMed
Lindahl U, Kusche-Gullberg M, Kjellen L (1998) Regulated diversity of heparan sulfate. J Biol Chem 273: 24979–24982. PubMed
Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71: 435–471. PubMed
Spear PG (2004) Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiol 6: 401–410. PubMed
Wang E, Volkova E, Adams AP, Forrester N, Xiao SY, et al. (2008) Chimeric alphavirus vaccine candidates for chikungunya. Vaccine 26: 5030–5039. PubMed PMC
Ng LF, Chow A, Sun YJ, Kwek DJ, Lim PL, et al. (2009) IL-1beta, IL-6, and RANTES as biomarkers of Chikungunya severity. PLoS One 4: e4261. PubMed PMC
Teo TH, Lum FM, Claser C, Lulla V, Lulla A, et al. (2013) A pathogenic role for CD4+ T cells during Chikungunya virus infection in mice. J Immunol 190: 259–269. PubMed
Byrnes AP, Durbin JE, Griffin DE (2000) Control of Sindbis virus infection by antibody in interferon-deficient mice. J Virol 74: 3905–3908. PubMed PMC
Davis NL, Fuller FJ, Dougherty WG, Olmsted RA, Johnston RE (1986) A single nucleotide change in the E2 glycoprotein gene of Sindbis virus affects penetration rate in cell culture and virulence in neonatal mice. Proc Natl Acad Sci U S A 83: 6771–6775. PubMed PMC
Johnston RE, Smith JF (1988) Selection for accelerated penetration in cell culture coselects for attenuated mutants of Venezuelan equine encephalitis virus. Virology 162: 437–443. PubMed
Russell DL, Dalrymple JM, Johnston RE (1989) Sindbis virus mutations which coordinately affect glycoprotein processing, penetration, and virulence in mice. J Virol 63: 1619–1629. PubMed PMC
Olmsted RA, Baric RS, Sawyer BA, Johnston RE (1984) Sindbis virus mutants selected for rapid growth in cell culture display attenuated virulence in animals. Science 225: 424–427. PubMed
White LJ, Wang JG, Davis NL, Johnston RE (2001) Role of alpha/beta interferon in Venezuelan equine encephalitis virus pathogenesis: effect of an attenuating mutation in the 5′ untranslated region. J Virol 75: 3706–3718. PubMed PMC