Odours stimulate neuronal activity in the dorsolateral area of the hippocampal formation during path integration
Language English Country Great Britain, England Media electronic-print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
24671977
PubMed Central
PMC3996611
DOI
10.1098/rspb.2014.0025
PII: rspb.2014.0025
Knihovny.cz E-resources
- Keywords
- hippocampus, homing, immediate early genes, navigation, olfactory activation, pigeon,
- MeSH
- Olfactory Perception * MeSH
- Columbidae physiology MeSH
- Genetic Markers MeSH
- Hippocampus physiology MeSH
- Odorants * MeSH
- Spatial Navigation MeSH
- Proto-Oncogene Proteins c-fos genetics metabolism MeSH
- Avian Proteins genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Genetic Markers MeSH
- Proto-Oncogene Proteins c-fos MeSH
- Avian Proteins MeSH
The dorsolateral area of the hippocampal formation of birds is commonly assumed to play a central role in processing information needed for geographical positioning and homing. Previous work has interpreted odour-induced activity in this region as evidence for an 'olfactory map'. Here, we show, using c-Fos expression as a marker, that neuronal activation in the dorsolateral area of the hippocampal formation of pigeons is primarily a response to odour novelty, not to the spatial distribution of odour sources that would be necessary for an olfactory map. Pigeons exposed to odours had significantly more neurons activated in this area of the brain than pigeons exposed to filtered air with odours removed. This increased activity was observed only in response to unfamiliar odours. No change in activity was observed when pigeons were exposed to home odours. These findings are consistent with non-home odours activating non-olfactory components of the pigeon's navigation system. The pattern of neuronal activation in the triangular and dorsomedial areas of the hippocampal formation was, by contrast, consistent with the possibility that odours play a role in providing spatial information.
See more in PubMed
Wiltschko W, Wiltschko R. 1998. The navigation system in birds and its development. In Animal cognition in nature, the convergence of phychology and biology in laboratory and field (eds Balda RP, Pepperberg IM, Kamil AC.), pp. 155–199 San Diego, CA: Academic Press
Jorge PE, Silva I, Vicente L. 2008. Loft features reveal the functioning of the young pigeons’ navigational system. Naturwissenchaften 95, 223–231 (doi:10.1007/s00114-007-0321-4) PubMed DOI
Jorge P, Vicente L, Wiltschko W. 2006. What strategies do homing pigeons use during ontogeny? Behaviour 143, 105–122 (doi:10.1163/156853906775133579) DOI
Papi F, Ioalé P, Fiaschi V, Benvenuti S, Baldaccini NE. 1978. Pigeon homing: cues detected during the outward journey influence initial orientation. In Animal migration navigation and homing (eds Schmidt-Koenig K, Keeton WT.), pp. 63–77 Berlin, Germany: Springer
Wallraff HG. 2005. Avian navigation: pigeon homing as a paradigm. Berlin, Germany: Springer
Wiltschko R, Wiltschko W. 1995. Magnetic orientation in animals. Berlin, Germany: Springer
Jorge PE, Marques AE, Phillips JB. 2009. Activational rather than navigational effects of odors on young pigeon homing. Curr. Biol. 19, 650–654 (doi:10.1016/j.cub.2009.02.066) PubMed DOI
Jorge PE, Marques PAM, Phillips JB. 2010. Activational effects of odours on avian navigation. Proc. R. Soc. B 277, 45–49 (doi:10.1098/rspb.2009.1521) PubMed DOI PMC
Jorge PE. 2011. Odors in the context of animal navigation. In The biology of odors: sources, olfaction and response (eds Weiss LE, Atwood JM.), pp. 207–226 New York, NY: Nova Science Publishers
Patzke N, Manns M, Güntürkün O, Ioalè P, Gagliardo A. 2010. Navigation-induced ZENK expression in the olfactory system of pigeons (Columba livia). Eur. J. Neurosci. 11, 2062–2072 (doi:10.1111/j.1460-9568.2010.07240.x) PubMed DOI
Wu L-Q, Dickman JD. 2011. Magnetoreception in an avian brain in part mediated by inner ear lagena. Curr. Biol. 21, 418–423 (doi:10.1016/j.cub.2011.01.058) PubMed DOI PMC
Wu L-Q, Dickman JD. 2012. Neural correlates of a magnetic sense. Science 336, 1054–1057 (doi:10.1126/science.1216567) PubMed DOI
Shimizu T, Bowers AN, Budzynski C, Kahn MC, Bingman VP. 2004. What does a pigeon brain look like during homing? Selective examination of ZENK expression in the telencephalon of pigeons navigating home. Behav. Neurosci. 118, 845–851 (doi:10.1037/0735-7044.118.4.845) PubMed DOI
Němec P, Altmann J, Marhold S, Burda H, Oelschläger HHA. 2001. Neuroanatomy of magnetoreception: the superior colliculus involved in magnetic orientation in a mammal. Science 294, 366–368 (doi:10.1126/science.1063351) PubMed DOI
Burger T, Lucova M, Moritz R, Oelschläger HHA, Druga R, Burda H, Wiltschko R, Wiltschko W, Němec P. 2010. Changing and shielded magnetic fields suppress c-Fos expression in the rodent navigation circuit: input from the magnetosensory system contributes to the internal representation of space in a subterranean rodent. J. R. Soc. Interface 7, 1275–1292 (doi:10.1098/rsif.2009.0551) PubMed DOI PMC
Karten HJ, Hodos W. 1967. A stereotaxic Atlas of the brain of the pigeon (Columba livia). Baltimore, MD: Johns Hopkins University Press
Zar JH. 1999. Biostatistical analysis, 4th edn Princeton, NJ: Prentice Hall
Bingman VP, Gagliardo A, Hough GE, Ioalé P, Kahn MC, Siegel JJ. 2005. The avian hippocampus, homing in pigeons and the memory representation of large-scale space. Integr. Comp. Biol. 45, 555–564 (doi:10.1093/icb/45.3.555) PubMed DOI
Dickman JD, Fang Q. 1996. Differential central projections of vestibular afferents in pigeons. J. Comp. Neurol. 367, 110–131 (doi:10.1002/(SICI)1096-9861(19960325)367:1<110::AID-CNE8>3.0.CO;2-6) PubMed DOI
Gagliardo A, Odetti F, Ioalé P, Pecchia T, Vallortigara G. 2005. Functional asymmetry of left and right avian piriform cortex in homing pigeons’ navigation. Eur. J. Neurosci. 22, 189–194 (doi:10.1111/j.1460-9568.2005.04204.x) PubMed DOI
Wylie DRW, Linkenhoker B, Lau KL. 1997. Projections of the nucleus of the basal optic root in pigeons (Columba livia) revealed with biotinylated dextran amine. J. Comp. Neurol. 384, 517–536 (doi:10.1002/(SICI)1096-9861(19970811)384:4<517::AID-CNE3>3.0.CO;2-5) PubMed DOI
Korzeniewska E, Güntürkün O. 1990. Sensory properties and afferents of the N. dorsolateralis posterior thalami of the pigeon. J. Comp. Neurol. 292, 457–479 (doi:10.1002/cne.902920311) PubMed DOI
Montagnese CM, Mezey SE, Csillag A. 2003. Efferent connections of the dorsomedial thalamic nuclei of the domestic chick (Gallus domesticus). J. Comp. Neurol. 459, 301–326 (doi:10.1002/cne.10612) PubMed DOI
Nardi D, Bingman VP. 2007. Asymmetrical participation of the left and right hippocampus for representing environmental geometry in homing pigeons. Behav. Brain Res. 178, 160–171 (doi:10.1016/j.bbr.2006.12.010) PubMed DOI
Patzke N, Manns M, Güntürkün O. 2011. Telencephalic organization of the olfactory system in homing pigeons (Columba livia). Neuroscience 194, 53–61 (doi:10.1016/j.neuroscience.2011.08.001) PubMed DOI
Phillips JB, Jorge PE. 2009. What can homing pigeons tell us about navigational impairments in Alzheimer's patients? Activational effect of odors. Comm. Integr. Biol. 2, 494–496 (doi:10.4161/cib.2.6.9407) DOI
Rattenborg NC, Martinez-Gonzalez D. 2011. A bird-brain view of episodic memory. Behav. Brain Res. 222, 236–245 (doi:10.1016/j.bbr.2011.03.030) PubMed DOI
Atoji Y, Wild JM. 2006. Anatomy of the avian hippocampal formation. Rev. Neurosci. 17, 3–15 (doi:10.1515/REVNEURO.2006.17.1-2.3) PubMed DOI
Colombo M, Broadbent N. 2000. Is the avian hippocampus a functional homologue of the mammalian hippocampus? Neurosci. Biobehav. Rev. 24, 465–484 (doi:10.1016/S0149-7634(00)00016-6) PubMed DOI