Prevention or early cure of type 1 diabetes by intranasal administration of gliadin in NOD mice
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24728138
PubMed Central
PMC3984166
DOI
10.1371/journal.pone.0094530
PII: PONE-D-13-34081
Knihovny.cz E-zdroje
- MeSH
- aplikace intranazální MeSH
- CD4-pozitivní T-lymfocyty imunologie MeSH
- cytokiny metabolismus MeSH
- diabetes mellitus 1. typu farmakoterapie imunologie prevence a kontrola MeSH
- forkhead transkripční faktory metabolismus MeSH
- gliadin aplikace a dávkování terapeutické užití MeSH
- gluteny aplikace a dávkování MeSH
- lidé MeSH
- lymfoidní tkáň imunologie patologie MeSH
- myši inbrední NOD MeSH
- počet lymfocytů MeSH
- slizniční imunita MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokiny MeSH
- forkhead transkripční faktory MeSH
- FOXP3 protein, human MeSH Prohlížeč
- gliadin MeSH
- gluteny MeSH
Induction of long-term tolerance to β-cell autoantigens has been investigated both in animal models and in human type 1 diabetes (T1D) in order to prevent the disease. As regards external compounds, the dietary plant protein fraction has been associated with high penetrance of the disease, whereas gluten-free diets prevent T1D in animal models. Herewith we investigated whether intranasal (i.n.) administration of gliadin or gluten may arrest the diabetogenic process. I.n. administration of gliadin to 4-week-old NOD mice significantly reduced the diabetes incidence. Similarly, the insulitis was lowered. Intranasal gliadin also rescued a fraction of prediabetic 13-week-old NOD mice from progressing to clinical onset of diabetes compared to OVA-treated controls. Vaccination with i.n. gliadin led to an induction of CD4(+)Foxp3(+) T cells and even more significant induction of γδ T cells in mucosal, but not in non-mucosal lymphoid compartments. This prevention strategy was characterized by an increased proportion of IL-10 and a decreased proportion of IL-2, IL-4 and IFN-γ-positive CD4(+)Foxp3(+) T cells, and IFN-γ-positive γδ T cells, preferentially in mucosal lymphoid organs. In conclusion, i.n. vaccination with gliadin, an environmental antigen with possible etiological influence in T1D, may represent a novel, safer strategy for prevention or even early cure of T1D.
Zobrazit více v PubMed
Onkamo P, Väänänen S, Karvonen M, Tuomilehto J (1999) Worldwide increase in incidence of Type I diabetes—the analysis of the data on published incidence trends. Diabetologia 42: 1395–1403. PubMed
Daaboul J, Schatz D (2003) Overview of prevention and intervention trials for type 1 diabetes. Rev Endocr Metab Disord 4: 317–323. PubMed
Homann D, Dyrberg T, Petersen J, Oldstone MB, von Herrath MG (1999) Insulin in oral immune “tolerance”: a one-amino acid change in the B chain makes the difference. J Immunol 163: 1833–1838. PubMed
Bergerot I, Fabien N, Maguer V, Thivolet C (1994) Oral administration of human insulin to NOD mice generates CD4+ T cells that suppress adoptive transfer of diabetes. J Autoimmun 7: 655–663. PubMed
Harrison LC, Dempsey-Collier M, Kramer DR, Takahashi K (1996) Aerosol insulin induces regulatory CD8 gamma delta T cells that prevent murine insulin-dependent diabetes. J Exp Med 184: 2167–2174. PubMed PMC
Ramiya VK, Shang XZ, Wasserfall CH, Maclaren NK (1997) Effect of oral and intravenous insulin and glutamic acid decarboxylase in NOD mice. Autoimmunity 26: 139–151. PubMed
Tian J, Atkinson MA, Clare-Salzler M, Herschenfeld A, Forsthuber T, et al. (1996) Nasal administration of glutamate decarboxylase (GAD65) peptides induces Th2 responses and prevents murine insulin-dependent diabetes. J Exp Med 183: 1561–1567. PubMed PMC
Daniel D, Wegmann DR (1996) Intranasal administration of insulin peptide B: 9–23 protects NOD mice from diabetes. Ann N Y Acad Sci 778: 371–372. PubMed
Chen W, Bergerot I, Elliott JF, Harrison LC, Abiru N, et al. (2001) Evidence that a peptide spanning the B–C junction of proinsulin is an early Autoantigen epitope in the pathogenesis of type 1 diabetes. J Immunol 167: 4926–4935. PubMed
Atkinson MA (2011) Evaluating preclinical efficacy. Sci Transl Med 3: 96cm22. PubMed
Herold KC, Bluestone JA (2011) Type 1 diabetes immunotherapy: is the glass half empty or half full? Sci Transl Med 3: 95fs1. PubMed
Hoorfar J, Buschard K, Dagnaes-Hansen F (1993) Prophylactic nutritional modification of the incidence of diabetes in autoimmune non-obese diabetic (NOD) mice. Br J Nutr 69: 597–607. PubMed
Hoorfar J, Scott FW, Cloutier HE (1991) Dietary plant materials and development of diabetes in the BB rat. J Nutr 121: 908–916. PubMed
Scott FW (1996) Food-induced type 1 diabetes in the BB rat Diabetes Metab Rev. 12: 341–359. PubMed
Funda DP, Kaas A, Bock T, Tlaskalová-Hogenová H, Buschard K (1999) Gluten-free diet prevents diabetes in NOD mice. Diabetes Metab Res Rev 15: 323–327. PubMed
Schmid S, Koczwara K, Schwinghammer S, Lampasona V, Ziegler AG, et al. (2004) Delayed exposure to wheat and barley proteins reduces diabetes incidence in non-obese diabetic mice. Clin Immunol 111: 108–118. PubMed
Cosnes J, Cellier C, Viola S, Colombel JF, Michaud L, et al. (2008) Incidence of autoimmune diseases in celiac disease: protective effect of the gluten-free diet. Clin Gastroenterol Hepatol 6: 753–758. PubMed
Hansen D, Brock-Jacobsen B, Lund E, Bjørn C, Hansen LP, et al. (2006) Clinical benefit of a gluten-free diet in type 1 diabetic children with screening-detected celiac disease: a population-based screening study with 2 years' follow-up. Diabetes Care 29: 2452–2456. PubMed
Klemetti P, Savilahti E, Ilonen J, Akerblom HK, Vaarala O (1998) T-cell reactivity to wheat gluten in patients with insulin-dependent diabetes mellitus. Scand J Immunol 47: 48–53. PubMed
Norris JM, Barriga K, Klingensmith G, Hoffman M, Eisenbarth GS, et al. (2003) Timing of initial cereal exposure in infancy and risk of islet autoimmunity. JAMA 290: 1713–1720. PubMed
Hansen AK, Ling F, Kaas A, Funda DP, Farlov H, et al. (2006) Diabetes preventive gluten-free diet decreases the number of caecal bacteria in non-obese diabetic mice. Diabetes Metab Res Rev 22: 220–225. PubMed
Nicklas W, Baneux P, Boot R, Decelle T, Deeny AA, et al. (2002) FELASA (Federation of European Laboratory Animal Science Associations Working Group on Health Monitoring of Rodent and Rabbit Colonies) Recommendations for the health monitoring of rodent and rabbit colonies in breeding and experimental units. Lab Anim 36: 20–42. PubMed
Fousteri G, Chan JR, Zheng Y, Whiting C, Dave A, et al. (2010) Virtual optimization of nasal insulin therapy predicts immunization frequency to be crucial for diabetes protection. Diabetes 59: 3148–3158. PubMed PMC
Mestecky J (1987) The common mucosal immune system and current strategies for induction of immune responses in external secretions. J Clin Immunol 7: 265–276. PubMed
Jaakkola I, Jalkanen S, Hänninen A (2003) Diabetogenic T cells are primed both in pancreatic and gut-associated lymph nodes in NOD mice. Eur J Immunol 33: 3255–3264. PubMed
Bresson D, Togher L, Rodrigo E, Chen Y, Bluestone JA, et al. (2006) Anti-CD3 and nasal proinsulin combination therapy enhances remission from recent-onset autoimmune diabetes by inducing Tregs. J Clin Invest 116: 1371–1381. PubMed PMC
Battaglia M, Stabilini A, Draghici E, Gregori S, Mocchetti C, et al. (2006) Rapamycin and interleukin-10 treatment induces T regulatory type 1 cells that mediate antigen-specific transplantation tolerance. Diabetes 55: 40–49. PubMed
Lindley S, Dayan CM, Bishop A, Roep BO, Peakman M, et al. (2005) Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes 54: 92–99. PubMed
Brusko TM, Wasserfall CH, Clare-Salzler MJ, Schatz DA, Atkinson MA (2005) Functional defects and the influence of age on the frequency of CD4+ CD25+ T-cells in type 1 diabetes. Diabetes 54: 1407–1414. PubMed
Lang FP, Schatz DA, Pollock BH, Riley WJ, Maclaren NK, et al. (1991) Increased T lymphocytes bearing the gamma-delta T cell receptor in subjects at high risk for insulin dependent diabetes. J Autoimmun 4: 925–933. PubMed
Lang FP, Pollock BH, Riley WJ, Maclaren NK, Barrett DJ (1993) The temporal association between gamma delta T cells and the natural history of insulin-dependent diabetes. J Autoimmun 6: 107–119. PubMed
Locke NR, Stankovic S, Funda DP, Harrison LC (2006) TCR gamma delta intraepithelial lymphocytes are required for self-tolerance. J Immunol 176: 6553–6559. PubMed
Funda D, Stenvang JP, Buschard K (1995) Age-related changes in T gamma delta cells of NOD mice. Immunol Lett 45: 179–184. PubMed
Zhang L, Jin N, Nakayama M, O'Brien RL, Eisenbarth GS, et al. (2010) Gamma delta T cell receptors confer autonomous responsiveness to the insulin-peptide B:9–23. J Autoimmun 34: 478–484. PubMed PMC
Ke Y, Pearce K, Lake JP, Ziegler HK, Kapp JA (1997) Gamma delta T lymphocytes regulate the induction and maintenance of oral tolerance. J Immunol 158: 3610–3618. PubMed
Diabetes Prevention Trial—Type 1 Diabetes Study Group (2002) Effects of insulin in relatives of patients with type 1 diabetes mellitus. N Engl J Med 346: 1685–1691. PubMed
Barker JM, McFann KK, Orban T (2007) Effect of oral insulin on insulin autoantibody levels in the Diabetes Prevention Trial Type 1 oral insulin study. Diabetologia 50: 1603–1606. PubMed
Wherrett DK, Bundy B, Becker DJ, DiMeglio LA, Gitelman SE, et al. (2011) Antigen-based therapy with glutamic acid decarboxylase (GAD) vaccine in patients with recent-onset type 1 diabetes: a randomised double-blind trial. Lancet 378: 319–327. PubMed PMC
Hanninen A, Harrison LC (2004) Mucosal tolerance to prevent type 1 diabetes: can the outcome be improved in humans? Rev Diabet Stud 1: 113–121. PubMed PMC
Rose NR, Bona C (1993) Defining criteria for autoimmune diseases (Witebsky's postulates revisited). Immunol Today 14: 426–430. PubMed
Chatenoud L, Bach JF (2005) Regulatory T cells in the control of autoimmune diabetes: the case of the NOD mouse. Int Rev Immunol 24: 247–267. PubMed
Hänninen A, Braakhuis A, Heath WR, Harrison LC (2001) Mucosal antigen primes diabetogenic cytotoxic T-lymphocytes regardless of dose or delivery route. Diabetes 50: 771–775. PubMed
Fousteri G, von Herrath M, Bresson D (2007) Mucosal exposure to antigen: cause or cure of type 1 diabetes? Curr Diab Rep 7: 91–98. PubMed
Strobel S, Mowat AM (1998) Immune responses to dietary antigens: oral tolerance. Immunology Today 19: 173–181. PubMed
Palova-Jelinkova L, Rozkova D, Pecharova B, Bartova J, Sediva A, et al. (2005) Gliadin fragments induce phenotypic and functional maturation of human dendritic cells. J Immunol 175: 7038–7045. PubMed
Thomas KE, Sapone A, Fasano A, Vogel SN (2006) Gliadin stimulation of murine macrophage inflammatory gene expression and intestinal permeability are MyD88–dependent: the role of the innate immune response in celiac disease. J Immunol 176: 7512–2521. PubMed
Nikulina M, Habich C, Flohe SB, Scott FW, Kolb H (2004) Wheat gluten causes dendritic cell maturation and chemokine secretion. J Immunol 173: 1925–1933. PubMed
Maiuri L, Ciacci C, Ricciardelli I, Vacca L, Raia V, et al. (2003) Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease. Lancet 5: 30–37. PubMed
Funda DP, Kaas A, Tlaskalová-Hogenová H, Buschard K (2008) Gluten-free but also gluten-enriched (gluten+) diet prevent diabetes in NOD mice; the gluten enigma in type 1 diabetes. Diabetes Metab Res Rev 24: 59–63. PubMed
Galipeau HJ, Rulli NE, Jury J, Huang X, Araya R, et al. (2011) Sensitization to gliadin induces moderate enteropathy and insulitis in nonobese diabetic-DQ8 mice. J Immunol 187: 4338–4346. PubMed PMC
Antvorskov JC, Fundova P, Buschard K, Funda DP (2012) Impact of dietary gluten on regulatory T cells and Th17 cells in BALB/c mice. PLoS ONE 7: e33315. PubMed PMC