Microarray analysis of serum mRNA in patients with head and neck squamous cell carcinoma at whole-genome scale
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24864240
PubMed Central
PMC4017838
DOI
10.1155/2014/408683
Knihovny.cz E-zdroje
- MeSH
- analýza hlavních komponent MeSH
- apoptóza genetika MeSH
- demografie MeSH
- dlaždicobuněčné karcinomy hlavy a krku MeSH
- dospělí MeSH
- genom lidský genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- messenger RNA krev genetika MeSH
- mikročipová analýza * MeSH
- nádorový supresorový protein p53 metabolismus MeSH
- nádory hlavy a krku krev genetika patologie MeSH
- regulace genové exprese u nádorů MeSH
- senioři MeSH
- signální transdukce genetika MeSH
- spinocelulární karcinom krev genetika patologie MeSH
- stanovení celkové genové exprese MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- messenger RNA MeSH
- nádorový supresorový protein p53 MeSH
With the increasing demand for noninvasive approaches in monitoring head and neck cancer, circulating nucleic acids have been shown to be a promising tool. We focused on the global transcriptome of serum samples of head and neck squamous cell carcinoma (HNSCC) patients in comparison with healthy individuals. We compared gene expression patterns of 36 samples. Twenty-four participants including 16 HNSCC patients (from 12 patients we obtained blood samples 1 year posttreatment) and 8 control subjects were recruited. The Illumina HumanWG-6 v3 Expression BeadChip was used to profile and identify the differences in serum mRNA transcriptomes. We found 159 genes to be significantly changed (Storey's P value <0.05) between normal and cancer serum specimens regardless of factors including p53 and B-cell lymphoma family members (Bcl-2, Bcl-XL). In contrast, there was no difference in gene expression between samples obtained before and after surgery in cancer patients. We suggest that microarray analysis of serum cRNA in patients with HNSCC should be suitable for refinement of early stage diagnosis of disease that can be important for development of new personalized strategies in diagnosis and treatment of tumours but is not suitable for monitoring further development of disease.
Zobrazit více v PubMed
Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P. Estimates of the cancer incidence and mortality in Europe in 2006. Annals of Oncology. 2007;18(3):581–592. PubMed
Liu C-J, Liu T-Y, Kuo L-T, et al. Differential gene expression signature between primary and metastatic head and neck squamous cell carcinoma. Journal of Pathology. 2008;214(4):489–497. PubMed
Garzino-Demo P, Dell'Acqua A, Dalmasso P, et al. Clinicopathological parameters and outcome of 245 patients operated for oral squamous cell carcinoma. Journal of Cranio-Maxillofacial Surgery. 2006;34(6):344–350. PubMed
Imre K, Pinar E, Oncel S, Calli C, Tatar B. Predictors of extracapsular spread in lymph node metastasis. European Archives of Oto-Rhino-Laryngology. 2008;265(3):337–339. PubMed
Puri SK, Fan C-Y, Hanna E. Significance of extracapsular lymph node metastases in patients with head and neck squamous cell carcinoma. Current Opinion in Otolaryngology and Head and Neck Surgery. 2003;11(2):119–123. PubMed
Han J, Kioi M, Chu W-S, Kasperbauer JL, Strome SE, Puri RK. Identification of potential therapeutic targets in human head & neck squamous cell carcinoma. Head & Neck Oncology. 2009;1, article 27 PubMed PMC
Chin D, Boyle GM, Williams RM, et al. Novel markers for poor prognosis in head and neck cancer. International Journal of Cancer. 2005;113(5):789–797. PubMed
Choi P, Chen C. Genetic expression profiles and biologic pathway alterations in head and neck squamous cell carcinoma. Cancer. 2005;104:1113–1128. PubMed
Cromer A, Carles A, Millon R, et al. Identification of genes associated with tumorigenesis and metastatic potential of hypopharyngeal cancer by microarray analysis. Oncogene. 2004;23(14):2484–2498. PubMed
Lemaire F, Millon R, Young J, et al. Differential expression profiling of head and neck squamous cell carcinoma (HNSCC) British Journal of Cancer. 2003;89(10):1940–1949. PubMed PMC
Ha PK, Chang SS, Glazer CA, Califano JA, Sidransky D. Molecular techniques and genetic alterations in head and neck cancer. Oral Oncology. 2009;45(4-5):335–339. PubMed PMC
Wieczorek AJ, Sitaramam V, Machleidt W, Rhyner K, Perruchoud AP, Block LH. Diagnostic and prognostic value of RNA-proteolipid in sera of patients with malignant disorders following therapy: first clinical evaluation of a novel tumor marker. Cancer Research. 1987;47(23):6407–6412. PubMed
Wong SC, Lo SF, Cheung MT, et al. Quantification of plasma β-catenin mRNA in colorectal cancer and adenoma patients. Clinical Cancer Research. 2004;10(5):1613–1617. PubMed
Chu D-C, Chuang C-K, Liou Y-F, Tzou R-D, Lee H-C, Sun C-F. The use of real-time quantitative PCR to detect circulating prostate-specific membrane antigen mRNA in patients with prostate carcinoma. Annals of the New York Academy of Sciences. 2004;1022:157–162. PubMed
Chen XQC, Bonnefoi H, Pelte M-F, et al. Telomerase RNA as a detection marker in the serum of breast cancer patients. Clinical Cancer Research. 2000;6(10):3823–3826. PubMed
Sueoka E, Sueoka N, Iwanaga K, et al. Detection of plasma hnRNP B1 mRNA, a new cancer biomarker, in lung cancer patients by quantitative real-time polymerase chain reaction. Lung Cancer. 2005;48(1):77–83. PubMed
Silva MS, da Silva Sá RL, Fagundes ML, et al. Contribution of the electrophysiological and anatomical analysis of the atypical atrioventricular nodal tachycardia circuit. Arquivos Brasileiros de Cardiologia. 2007;88(2):124–151. PubMed
Johnstone RM. Revisiting the road to the discovery of exosomes. Blood Cells, Molecules, and Diseases. 2005;34(3):214–219. PubMed
Papadopoulou E, Davilas E, Sotiriou V, et al. Cell-free DNA and RNA in plasma as a new molecular marker for prostate cancer. Oncology Research. 2004;14(9):439–445. PubMed
Hasselmann DO, Rappl G, Rossler M, Ugurel S, Tilgen W, Reinhold U. Detection of tumor-associated circulating mRNA in serum, plasma and blood cells from patients with disseminated malignant melanoma. Oncology Reports. 2001;8:115–118. PubMed
Miura N, Shiota G, Nakagawa T, et al. Sensitive detection of human telomerase reverse transcriptase mRNA in the serum of patients with hepatocellular carcinoma. Oncology. 2003;64(4):430–434. PubMed
Urbanova M, Plzak J, Strnad H, Betka J. Circulating nucleic acids as a new diagnostic tool. Cellular and Molecular Biology Letters. 2010;15(2):242–259. PubMed PMC
O’Driscoll L, Kenny E, Mehta JP, et al. Feasibility and relevance of global expression profiling of gene transcripts in serum from breast cancer patients using whole genome microarrays and quantitative RT-PCR. Cancer Genomics and Proteomics. 2008;5(2):95–104. PubMed
Schwarzenbach H, Hoon DSB, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nature Reviews Cancer. 2011;11(6):426–437. PubMed
Dunning MJ, Smith ML, Ritchie ME, Tavaré S. Beadarray: R classes and methods for Illumina bead-based data. Bioinformatics. 2007;23(16):2183–2184. PubMed
Smyth GK, Michaud J, Scott HS. Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics. 2005;21(9):2067–2075. PubMed
R package, illuminaHumanv3BeadID.db.
Tarca AL, Draghici S, Khatri P, et al. A novel signaling pathway impact analysis. Bioinformatics. 2009;25(1):75–82. PubMed PMC
Chen C, Méndez E, Houck J, et al. Gene expression profiling identifies genes predictive of oral squamous cell carcinoma. Cancer Epidemiology Biomarkers and Prevention. 2008;17(8):2152–2162. PubMed PMC
Li Y, Elashoff D, Oh M, et al. Serum circulating human mRNA profiling and its utility for oral cancer detection. Journal of Clinical Oncology. 2006;24(11):1754–1760. PubMed
Lacina L, Dvořánkova B, Smetana K, Jr., et al. Marker profiling of normal keratinocytes identifies the stroma from squamous cell carcinoma of the oral cavity as a modulatory microenvironment in co-culture. International Journal of Radiation Biology. 2007;83(11-12):837–848. PubMed
Klíma J, Lacina L, Dvořánková B, et al. Differential regulation of galectin expression/reactivity during wound healing in porcine skin and in cultures of epidermal cells with functional impact on migration. Physiological Research. 2009;58(6):873–884. PubMed
Dvorankova B, Szabo P, Lacina L, Kodet O, Matouskova E, Smetana K., Jr. Fibroblasts prepared from different types of malignant tumors stimulate expression of luminal marker keratin 8 in the EM-G3 breast cancer cell line. Histochemistry and Cell Biology. 2012;137(5):679–685. PubMed
Strnad H, Lacina L, Kolář M, et al. Head and neck squamous cancer stromal fibroblasts produce growth factors influencing phenotype of normal human keratinocytes. Histochemistry and Cell Biology. 2010;133(2):201–211. PubMed
Valach J, Fík Z, Strnad H, et al. Smooth muscle actin-expressing stromal fibroblasts in head and neck squamous cell carcinoma: increased expression of galectin-1 and induction of poor prognosis factors. International Journal of Cancer. 2012;131:2499–2508. PubMed
Swarup V, Rajeswari MR. Circulating (cell-free) nucleic acids: a promising, non-invasive tool for early detection of several human diseases. FEBS Letters. 2007;581(5):795–799. PubMed
Chen XQ, Bonnefoi H, Diebold-Berger S, et al. Detecting tumor-related alterations in plasma or serum DNA of patients diagnosed with breast cancer. Clinical Cancer Research. 1999;5(9):2297–2303. PubMed
Nawroz H, Koch W, Anker P, Stroun M, Sidransky D. Microsatellite alterations in serum DNA of head and neck cancer patients. Nature Medicine. 1996;2(9):1035–1037. PubMed
Humtsoe JO, Koya E, Pham E, et al. Transcriptional profiling identifies upregulated genes following induction of epithelial-mesenchymal transition in squamous carcinoma cells. Experimental Cell Research. 2012;318(4):379–390. PubMed
Molloy TJ, Roepman P, Naume B, van’t Veer LJ. A prognostic gene expression profile that predicts circulating tumor cell presence in breast cancer patients. PLoS ONE. 2012;7(2)e32426 PubMed PMC
Oliveras-Ferraros C, Vazquez-Martin A, Queralt B, et al. Interferon/STAT1 and neuregulin signaling pathways are exploratory biomarkers of cetuximab (Erbitux®) efficacy in KRAS wild-type squamous carcinomas: a pathway-based analysis of whole human-genome microarray data from cetuximab-adapted tumor cell-line models. International Journal of Oncology. 2011;39(6):1455–1479. PubMed
Heller G, Weinzierl M, Noll C, et al. Genome-wide miRNA expression profiling identifies miR-9-3 and miR-193a as targets for DNA methylation in non-small cell lung cancers. Clinical Cancer Research. 2012;18(6):1619–1629. PubMed
de la Blétière DR, Blanchet O, Cornillet-Lefèbvre P, et al. Routine use of microarray-based gene expression profiling to identify patients with low cytogenetic risk acute myeloid leukemia: accurate results can be obtained even with suboptimal samples. BMC Medical Genomics. 2012;5, article 6 PubMed PMC
Simons A, Stevens-Kroef M, El Idrissi-Zaynoun N, et al. Microarray-based genomic profiling as a diagnostic tool in acute lymphoblastic leukemia. Genes Chromosomes and Cancer. 2011;50(12):969–981. PubMed
Harris JA, Jain S, Ren Q, Zarineh A, Liu C, Ibrahim S. CD163 versus CD68 in tumor associated macrophages of classical hodgkin lymphoma. Diagnostic Pathology. 2012;7(1, article 12) PubMed PMC
Hemann MT, Lowe SW. The p53-Bcl-2 connection. Cell Death and Differentiation. 2006;13(8):1256–1259. PubMed PMC
Attardi LD, Donehower LA. Probing p53 biological functions through the use of genetically engineered mouse models. Mutation Research: Fundamental and Molecular Mechanisms of Mutagenesis. 2005;576(1-2):4–21. PubMed
Green DR. Apoptotic pathways: ten minutes to dead. Cell. 2005;121(5):671–674. PubMed
Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science. 2004;305(5684):626–629. PubMed
Cory S, Adams JM. Killing cancer cells by flipping the Bcl-2/Bax switch. Cancer Cell. 2005;8(1):5–6. PubMed
Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature. 1990;348(6299):334–336. PubMed
Lowe SW, Cepero E, Evan G. Intrinsic tumour suppression. Nature. 2004;432(7015):307–315. PubMed
de Vicente JC, Gutiérrez LMJ, Zapatero AH, Forcelledo MFF, Hernández-Vallejo G, López Arranz JS. Prognostic significance of p53 expression in oral squamous cell carcinoma without neck node metastases. Head and Neck. 2004;26(1):22–30. PubMed
Khademi B, Shirazi FM, Vasei M, et al. The expression of p53, c-erbB-1 and c-erbB-2 molecules and their correlation with prognostic markers in patients with head and neck tumors. Cancer Letters. 2002;184(2):223–230. PubMed
Bauer JA, Trask DK, Kumar B, et al. Reversal of cisplatin resistance with a BH3 mimetic, (-)-gossypol, in head and neck cancer cells: role of wild-type p53 and Bcl-xL. Molecular Cancer Therapeutics. 2005;4(7):1096–1104. PubMed
Yamano Y, Uzawa K, Saito K, et al. Identification of cisplatin-resistance related genes in head and neck squamous cell carcinoma. International Journal of Cancer. 2010;126(2):437–449. PubMed
Bauer JA, Kumar B, Cordell KG, et al. Targeting apoptosis to overcome cisplatin resistance: a translational study in head and neck cancer. International Journal of Radiation Oncology Biology Physics. 2007;69(2):S106–S108. PubMed PMC
Fik Z, Valach J, Chovanec M, et al. Loss of adhesion/growth-regulatory galectin-9 from squamous cell epithelium in head and neck carcinomas. Journal of Oral Pathology and Medicine. 2013;42(2):166–173. PubMed
Ha PK, Califano JA. The molecular biology of mucosal field cancerization of the head and neck. Critical Reviews in Oral Biology and Medicine. 2003;14(5):363–369. PubMed
Willis SN, Adams JM. Life in the balance: how BH3-only proteins induce apoptosis. Current Opinion in Cell Biology. 2005;17(6):617–625. PubMed PMC
Hermeking H, Eick D. Mediation of c-myc-induced apoptosis by p53. Science. 1994;265(5181):2091–2093. PubMed
Egle A, Harris AW, Bouillet P, Cory S. Bim is a suppressor of Myc-induced mouse B cell leukemia. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(16):6164–6169. PubMed PMC
Willis SN, Chen L, Dewson G, et al. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes and Development. 2005;19(11):1294–1305. PubMed PMC
Robson SC, Ward L, Brown H, et al. Deciphering c-MYC-regulated genes in two distinct tissues. BMC Genomics. 2011;12, article 476 PubMed PMC
Fiebig AA, Zhu W, Hollerbach C, Leber B, Andrews DW. Bcl-XL is qualitatively different from and ten times more effective than Bcl-2 when expressed in a breast cancer cell line. BMC Cancer. 2006;6, article 213 PubMed PMC