Genome-wide screening of cytogenetic abnormalities in multiple myeloma patients using array-CGH technique: a Czech multicenter experience
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu klinické zkoušky, časopisecké články, multicentrická studie, práce podpořená grantem
PubMed
24987674
PubMed Central
PMC4060785
DOI
10.1155/2014/209670
Knihovny.cz E-zdroje
- MeSH
- celogenomová asociační studie * MeSH
- chromozomální aberace * MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mnohočetný myelom diagnóza genetika MeSH
- nádorové proteiny genetika MeSH
- prognóza MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- srovnávací genomová hybridizace metody MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- nádorové proteiny MeSH
Characteristic recurrent copy number aberrations (CNAs) play a key role in multiple myeloma (MM) pathogenesis and have important prognostic significance for MM patients. Array-based comparative genomic hybridization (aCGH) provides a powerful tool for genome-wide classification of CNAs and thus should be implemented into MM routine diagnostics. We demonstrate the possibility of effective utilization of oligonucleotide-based aCGH in 91 MM patients. Chromosomal aberrations associated with effect on the prognosis of MM were initially evaluated by I-FISH and were found in 93.4% (85/91). Incidence of hyperdiploidy was 49.5% (45/91); del(13)(q14) was detected in 57.1% (52/91); gain(1)(q21) occurred in 58.2% (53/91); del(17)(p13) was observed in 15.4% (14/91); and t(4;14)(p16;q32) was found in 18.6% (16/86). Genome-wide screening using Agilent 44K aCGH microarrays revealed copy number alterations in 100% (91/91). Most common deletions were found at 13q (58.9%), 1p (39.6%), and 8p (31.1%), whereas gain of whole 1q was the most often duplicated region (50.6%). Furthermore, frequent homozygous deletions of genes playing important role in myeloma biology such as TRAF3, BIRC1/BIRC2, RB1, or CDKN2C were observed. Taken together, we demonstrated the utilization of aCGH technique in clinical diagnostics as powerful tool for identification of unbalanced genomic abnormalities with prognostic significance for MM patients.
Zobrazit více v PubMed
Dimopoulos M, Kyle R, Fermand J-P, et al. Consensus recommendations for standard investigative workup: report of the International Myeloma Workshop Consensus Panel 3. Blood. 2011;117(18):4701–4705. PubMed
Fonseca R, Barlogie B, Bataille R, et al. Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Research. 2004;64(4):1546–1558. PubMed
Fonseca R, Harrington D, Oken MM, et al. Biological and prognostic significance of interphase fluorescence in situ hybridization detection of chromosome 13 abnormalities (Δ13) in multiple myeloma: an Eastern Cooperative Oncology Group study. Cancer Research. 2002;62(3):715–720. PubMed
Smadja NV, Bastard C, Brigaudeau C, Leroux D, Fruchart C. Hypodiploidy is a major prognostic factor in multiple myeloma. Blood. 2001;98(7):2229–2238. PubMed
Shaughnessy J. Amplification and overexpression of CKS1B at chromosome band 1q21 is associated with reduced levels of p27 Kip1 and an aggressive clinical course in multiple myeloma. Hematology. 2005;10(1):117–126. PubMed
Fonseca R, Van Wier SA, Chng WJ, et al. Prognostic value of chromosome 1q21 gain by fluorescent in situ hybridization and increase CKS1B expression in myeloma. Leukemia. 2006;20(11):2034–2040. PubMed
Gutiérrez NC, García JL, Hernández JM, et al. Prognostic and biologic significance of chromosomal imbalances assessed by comparative genomic hybridization in multiple myeloma. Blood. 2004;104(9):2661–2666. PubMed
Walker BA, Morgan GJ. Use of single nucleotide polymorphism—based mapping arrays to detect copy number changes and loss of heterozygosity in multiple myeloma. Clinical Lymphoma and Myeloma. 2006;7(3):186–191. PubMed
Largo C, Alvarez S, Saez B, et al. Identification of overexpressed genes in frequently gained/amplified chromosome regions in multiple myeloma. Haematologica. 2006;91(2):184–191. PubMed
Chapman MA, Lawrence MS, Keats JJ, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011;471(7339):467–472. PubMed PMC
Nemec P, Zemanova Z, Kuglik P, et al. Complex karyotype and translocation t(4;14) define patients with high-risk newly diagnosed multiple myeloma: results of CMG2002 trial. Leukemia and Lymphoma. 2012;53(5):920–927. PubMed
Greslikova H, Zaoralova R, Filkova H, et al. Negative prognostic significance of two or more cytogenetic abnormalities in multiple myeloma patients treated with autologous stem cell transplantation. Neoplasma. 2010;57(2):111–117. PubMed
Cumova J, Kovarova L, Potacova A, et al. Optimization of immunomagnetic selection of myeloma cells from bone marrow using magnetic activated cell sorting. International Journal of Hematology. 2010;92(2):314–319. PubMed
Smetana J, Fröhlich J, Vranová V, Mikulášová A, Kuglík P, Hájek R. Oligonucleotide-based array CGH as a diagnostic tool in multiple myeloma patients. Klinicka Onkologie. 2011;24:S43–S48. PubMed
Lipson D, Aumann Y, Ben-Dor A, Linial N, Yakhini Z. Efficient calculation of interval scores for DNA copy number data analysis. Journal of Computational Biology. 2006;13(2):215–228. PubMed
Ahmann GJ, Jalal SM, Juneau AL, et al. A novel three-color, clone-specific fluorescence in situ hybridization procedure for monoclonal gammopathies. Cancer Genetics and Cytogenetics. 1998;101(1):7–11. PubMed
Ross FM, Avet-Loiseau H, Ameye G, et al. Report from the European myeloma network on interphase FISH in multiple myeloma and related disorders. Haematologica. 2012;97(8):1272–1277. PubMed PMC
Kumar S, Fonseca R, Ketterling RP, et al. Trisomies in multiple myeloma: impact on survival in patients with high-risk cytogenetics. Blood. 2012;119(9):2100–2105. PubMed PMC
Fonseca R, Bergsagel PL, Drach J, et al. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia. 2009;23(12):2210–2221. PubMed PMC
Gutiérrez NC, Castellanos MV, Martín ML, et al. Prognostic and biological implications of genetic abnormalities in multiple myeloma undergoing autologous stem cell transplantation: t(4;14) is the most relevant adverse prognostic factor, whereas RB deletion as a unique abnormality is not associated with adverse prognosis. Leukemia. 2007;21(1):143–150. PubMed
Lodé L, Eveillard M, Trichet V, et al. Mutations in TP53 are exclusively associated with del(17p) in multiple myeloma. Haematologica. 2010;95(11):1973–1976. PubMed PMC
Smetana J, Berankova K, Zaoralova R, et al. Gain(1)(q21) is an unfavorable genetic prognostic factor for patients with relapsed multiple myeloma treated with thalidomide but not for those treated with bortezomib. Clinical Lymphoma, Myeloma and Leukemia. 2013;13(2):123–130. PubMed
Carrasco DR, Tonon G, Huang Y, et al. High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell. 2006;9(4):313–325. PubMed
Avet-Loiseau H, Li C, Magrangeas F, et al. Prognostic significance of copy-number alterations in multiple myeloma. Journal of Clinical Oncology. 2009;27(27):4585–4590. PubMed PMC
Boyd KD, Ross FM, Walker BA, et al. Mapping of chromosome 1p deletions in myeloma identifies FAM46C at 1p12 and CDKN2C at 1p32.3 as being genes in regions associated with adverse survival. Clinical Cancer Research. 2011;17(24):7776–7784. PubMed PMC
Walker BA, Leone PE, Chiecchio L, et al. A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. Blood. 2010;116(15):e56–e65. PubMed
Chang H, Qi X, Jiang A, Xu W, Young T, Reece D. 1p21 deletions are strongly associated with 1q21 gains and are an independent adverse prognostic factor for the outcome of high-dose chemotherapy in patients with multiple myeloma. Bone Marrow Transplantation. 2010;45(1):117–121. PubMed
Boyd KD, Ross FM, Tapper WJ, et al. The clinical impact and molecular biology of del(17p) in multiple myeloma treated with conventional or thalidomide-based therapy. Genes Chromosomes and Cancer. 2011;50(10):765–774. PubMed
Demchenko YN, Glebov OK, Zingone A, Keats JJ, Leif Bergsagel P, Michael Kuehl W. Classical and/or alternative NF-κB pathway activation in multiple myeloma. Blood. 2010;115(17):3541–3552. PubMed PMC
Keats JJ, Fonseca R, Chesi M, et al. Promiscuous mutations activate the noncanonical NF-κB pathway in multiple myeloma. Cancer Cell. 2007;12(2):131–144. PubMed PMC
Braggio E, Keats JJ, Leleu X, et al. Identification of copy number abnormalities and inactivating mutations in two negative regulators of nuclear factor-κB signaling pathways in Waldenström’s macroglobulinemia. Cancer Research. 2009;69(8):3579–3588. PubMed PMC
Dickens NJ, Walker BA, Leone PE, et al. Homozygous deletion mapping in myeloma samples identifies genes and an expression signature relevant to pathogenesis and outcome. Clinical Cancer Research. 2010;16(6):1856–1864. PubMed PMC
Gardam S, Turner VM, Anderton H, et al. Deletion of cIAP1 and cIAP2 in murine B lymphocytes constitutively activates cell survival pathways and inactivates the germinal center response. Blood. 2011;117(15):4041–4051. PubMed
Di Fiore R, D’Anneo A, Tesoriere G, Vento R. RB1 in cancer: different mechanisms of RB1 inactivation and alterations of pRb pathway in tumorigenesis. Journal of Cellular Physiology. 2013;228(8):1676–1687. PubMed
Gunn SR, Mohammed MS, Gorre ME, et al. Whole-genome scanning by array comparative genomic hybridization as a clinical tool for risk assessment in chronic lymphocytic leukemia. Journal of Molecular Diagnostics. 2008;10(5):442–451. PubMed PMC
Tyybäkinoja A, Vilpo J, Knuutila S. High-resolution oligonucleotide array-CGH pinpoints genes involved in cryptic losses in chronic lymphocytic leukemia. Cytogenetic and Genome Research. 2007;118(1):8–12. PubMed
Patel A, Kang S-H, Lennon PA, et al. Validation of a targeted DNA microarray for the clinical evaluation of recurrent abnormalities in chronic lymphocytic leukemia. American Journal of Hematology. 2008;83(7):540–546. PubMed
O’Malley DP, Giudice C, Chang AS, et al. Comparison of array comparative genomic hybridization (aCGH) to FISH and cytogenetics in prognostic evaluation of chronic lymphocytic leukemia. International Journal of Laboratory Hematology. 2011;33(3):238–244. PubMed
Largo C, Saéz B, Alvarez S, et al. Multiple myeloma primary cells show a highly rearranged unbalanced genome with amplifications and homozygous deletions irrespective of the presence of immunoglobulin-related chromosome translocations. Haematologica. 2007;92(6):795–802. PubMed
Valli R, Maserati E, Marletta C, Pressato B, Lo Curto F, Pasquali F. Evaluating chromosomal mosaicism by array comparative genomic hybridization in hematological malignancies: the proposal of a formula. Cancer Genetics. 2011;204(4):216–218. PubMed