Mechanisms of FSH- and Amphiregulin-Induced MAP Kinase 3/1 Activation in Pig Cumulus-Oocyte Complexes During Maturation In Vitro

. 2019 Mar 07 ; 20 (5) : . [epub] 20190307

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30866587

Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000460 The Operational Programme Research, Development and Education
QJ 1510138 The National Agency for Agricultural Research

The maturation of mammalian oocytes in vitro can be stimulated by gonadotropins (follicle-stimulating hormone, FSH) or their intrafollicular mediator, epidermal growth factor (EGF)-like peptide-amphiregulin (AREG). We have shown previously that in pig cumulus-oocyte complexes (COCs), FSH induces expression and the synthesis of AREG that binds to EGF receptor (EGFR) and activates the mitogen-activated protein kinase 3/1 (MAPK3/1) signaling pathway. However, in this study we found that FSH also caused a rapid activation of MAPK3/1 in the cumulus cells, which cannot be explained by the de novo synthesis of AREG. The rapid MAPK3/1 activation required EGFR tyrosine kinase (TK) activity, was sensitive to SRC proto-oncogene non-receptor tyrosine kinase (SRC)-family and protein kinase C (PKC) inhibitors, and was resistant to inhibitors of protein kinase A (PKA) and metalloproteinases. AREG also induced the rapid activation of MAPK3/1 in cumulus cells, but this activation was only dependent on the EGFR TK activity. We conclude that in cumulus cells, FSH induces a rapid activation of MAPK3/1 by the ligand-independent transactivation of EGFR, requiring SRC and PKC activities. This rapid activation of MAPK3/1 precedes the second mechanism participating in the generation and maintenance of active MAPK3/1-the ligand-dependent activation of EGFR depending on the synthesis of EGF-like peptides.

Zobrazit více v PubMed

Posada J., Yew N., Ahn N.G., Vande Woude G.F., Cooper J.A. Mos stimulates MAP kinase in Xenopus oocytes and activates a MAP kinase kinase in vitro. Mol. Cell. Biol. 1993;13:2546–2553. doi: 10.1128/MCB.13.4.2546. PubMed DOI PMC

Verlhac M.H., Lefebvre C., Kubiak J.Z., Umbhauer M., Rassinier P., Colledge W., Maro B. Mos activates MAP kinase in mouse oocytes through two opposite pathways. EMBO J. 2000;19:6065–6074. doi: 10.1093/emboj/19.22.6065. PubMed DOI PMC

Su Y., Wigglesworth K., Pendola F.L., O’Brien M.J., Eppig J.J. Mitogen-activated protein kinase activity in cumulus cells is essential for gonadotropin-induced oocyte meiotic resumption and cumulus expansion in the mouse. Endocrinology. 2002;143:2221–2232. doi: 10.1210/endo.143.6.8845. PubMed DOI

Su Y.Q., Denegre J.M., Wigglesworth K., Pendola F.L., O’Brien M.J., Eppig J.J. Oocyte-dependent activation of mitogen-activated protein kinase (ERK1/2) in cumulus cells is required for the maturation of the mouse oocyte-cumulus cell complex. Dev. Biol. 2003;263:126–138. doi: 10.1016/S0012-1606(03)00437-8. PubMed DOI

Siddappa D., Beaulieu É., Gévry N., Roux P.P., Bordignon V., Duggavathi R. Effect of the transient pharmacological inhibition of Mapk3/1 pathway on ovulation in mice. PLoS ONE. 2015;10:e0119387. doi: 10.1371/journal.pone.0119387. PubMed DOI PMC

Meinecke B., Krischek C. MAPK/ERK kinase (MEK) signalling is required for resumption of meiosis in cultured cumulus-enclosed pig oocytes. Zygote. 2003;11:7–16. doi: 10.1017/S0967199403001023. PubMed DOI

Prochazka R., Blaha M., Nemcova L. Signaling pathways regulating FSH- and amphiregulin-induced meiotic resumption and cumulus cell expansion in the pig. Reproduction. 2012;144:535–546. doi: 10.1530/REP-12-0191. PubMed DOI

Fan H.Y., Liu Z., Shimada M., Sterneck E., Johnson P.F., Hedrick S.M., Richards J.S. MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility. Science. 2009;324:938–941. doi: 10.1126/science.1171396. PubMed DOI PMC

Mehlmann L.M. Stops and starts in mammalian oocytes: Recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction. 2005;130:791–799. doi: 10.1530/rep.1.00793. PubMed DOI

Cameron M.R., Foster J.S., Bukovsky A., Wimalasena J. Activation of mitogen-activated protein kinases by gonadotropins and cyclic adenosine 5′-monophosphates in porcine granulosa cells. Biol. Reprod. 1996;55:111–119. doi: 10.1095/biolreprod55.1.111. PubMed DOI

Park J.Y., Su Y.Q., Ariga M., Law E., Jin S.L., Conti M. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science. 2004;303:682–684. doi: 10.1126/science.1092463. PubMed DOI

Ashkenazi H., Cao X., Motola S., Popliker M., Conti M., Tsafriri A. Epidermal growth factor family members: Endogenous mediators of the ovulatory response. Endocrinology. 2005;46:77–84. doi: 10.1210/en.2004-0588. PubMed DOI

Panigone S., Hsieh M., Fu M., Persani L., Conti M. Luteinizing hormone signaling in preovulatory follicles involves early activation of the epidermal growth factor receptor pathway. Mol. Endocrinol. 2008;22:924–936. doi: 10.1210/me.2007-0246. PubMed DOI PMC

Wayne C.M., Fan H.Y., Cheng X., Richards J.S. Follicle-stimulating hormone induces multiple signaling cascades: Evidence that activation of Rous sarcoma oncogene, RAS, and the epidermal growth factor receptor are critical for granulosa cell differentiation. Mol. Endocrinol. 2007;21:1940–1957. doi: 10.1210/me.2007-0020. PubMed DOI

Sela-Abramovich S., Chorev E., Galiani D., Dekel N. Mitogen-activated protein kinase mediates luteinizing hormone-induced breakdown of communication and oocyte maturation in rat ovarian follicles. Endocrinology. 2005;146:1236–1244. doi: 10.1210/en.2004-1006. PubMed DOI

Ohashi S., Naito K., Sugiura K., Iwamori N., Goto S., Naruoka H., Tojo H. Analyses of mitogen-activated protein kinase function in the maturation of porcine oocytes. Biol. Reprod. 2003;68:604–609. doi: 10.1095/biolreprod.102.008334. PubMed DOI

Ebeling S., Schuon C., Meinecke B. Mitogen-activated protein kinase phosphorylation patterns in pig oocytes and cumulus cells during gonadotrophin-induced resumption of meiosis in vitro. Zygote. 2007;15:139–147. doi: 10.1017/S0967199406004011. PubMed DOI

Nemcova L., Nagyova E., Petlach M., Tomanek M., Prochazka R. Molecular mechanisms of insulin-like growth factor 1 promoted synthesis and retention of hyaluronic acid in porcine oocyte-cumulus complexes. Biol. Reprod. 2007;76:1016–1024. doi: 10.1095/biolreprod.106.057927. PubMed DOI

Yamashita Y., Okamoto M., Kawashima I., Okazaki T., Nishimura R., Gunji Y., Hishinuma M., Shimada M. Positive feedback loop between prostaglandin E2 and EGF-like factors is essential for sustainable activation of MAPK3/1 in cumulus cells during in vitro maturation of porcine cumulus oocyte complexes. Biol. Reprod. 2011;85:1073–1082. doi: 10.1095/biolreprod.110.090092. PubMed DOI

Prochazka R., Blaha M. Regulation of mitogen-activated protein kinase 3/1 activity during meiosis resumption in mammals. J. Reprod. Dev. 2015;61:495–502. doi: 10.1262/jrd.2015-069. PubMed DOI PMC

Salhab M., Dhorne-Pollet S., Auclair S., Guyader-Joly C., Brisard D., Dalbies-Tran R., Dupont J., Ponsart C., Mermillod P., Uzbekova S. In vitro maturation of oocytes alters gene expression and signaling pathways in bovine cumulus cells. Mol. Reprod. Dev. 2013;80:166–182. doi: 10.1002/mrd.22148. PubMed DOI

Reddy R.J., Gajadhar A.S., Swenson E.J., Rothenberg D.A., Curran T.G., White F.M. Early signaling dynamics of the epidermal growth factor receptor. Proc. Natl. Acad. Sci. USA. 2016;113:3114–3119. doi: 10.1073/pnas.1521288113. PubMed DOI PMC

Chen J., Torcia S., Xie F., Lin C.J., Cakmak H., Franciosi F., Horner K., Onodera C., Song J.S., Cedars M.I., et al. Somatic cells regulate maternal mRNA translation and developmental competence of mouse oocytes. Nat. Cell Biol. 2013;15:1415–1423. doi: 10.1038/ncb2873. PubMed DOI PMC

Franciosi F., Manandhar S., Conti M. FSH regulates mRNA translation in mouse oocytes and promotes developmental competence. Endocrinology. 2016;157:872–882. doi: 10.1210/en.2015-1727. PubMed DOI PMC

Khan D.R., Guillemette C., Sirard M.A., Richard F.J. Characterization of FSH signalling networks in bovine cumulus cells: A perspective on oocyte competence acquisition. Mol. Hum. Reprod. 2015;21:688–701. doi: 10.1093/molehr/gav032. PubMed DOI

Wang Z. Transactivation of Epidermal Growth Factor Receptor by G Protein-Coupled Receptors: Recent Progress, Challenges and Future Research. Int. J. Mol. Sci. 2016;17:E95. doi: 10.3390/ijms17010095. PubMed DOI PMC

Tatosyan A.G., Mizenina O.A. Kinases of the Src family: Structure and functions. Biochemistry. 2000;65:49–58. PubMed

Liebmann C. EGF receptor activation by GPCRs: An universal pathway reveals different versions. Mol. Cell. Endocrinol. 2011;331:222–231. doi: 10.1016/j.mce.2010.04.008. PubMed DOI

George A.J., Hannan R.D., Thomas W.G. Unravelling the molecular complexity of GPCR-mediated EGFR transactivation using functional genomics approaches. FEBS J. 2013;280:5258–5268. doi: 10.1111/febs.12509. PubMed DOI

Cattaneo F., Guerra G., Parisi M., De Marinis M., Tafuri D., Cinelli M., Ammendola R. Cell-surface receptors transactivation mediated by G protein-coupled receptors. Int. J. Mol. Sci. 2014;15:19700–19728. doi: 10.3390/ijms151119700. PubMed DOI PMC

Drube S., Stirnweiss J., Valkova C., Liebmann C. Ligand-independent and EGF receptor-supported transactivation: Lessons from beta2-adrenergic receptor signalling. Cell Signal. 2006;18:1633–1646. doi: 10.1016/j.cellsig.2006.01.003. PubMed DOI

Chen Y., Peng F.F., Jin J., Chen H.M., Yu H., Zhang B.F. Src-mediated ligand release-independent EGFR transactivation involves TGF-β-induced Smad3 activation in mesangial cells. Biochem. Biophys. Res. Commun. 2017;493:914–920. doi: 10.1016/j.bbrc.2017.09.121. PubMed DOI

Downs S.M., Cottom J., Hunzicker-Dunn M. Protein kinase C and meiotic regulation in isolated mouse oocytes. Mol. Reprod. Dev. 2001;58:101–115. doi: 10.1002/1098-2795(200101)58:1<101::AID-MRD13>3.0.CO;2-J. PubMed DOI

Fan H.Y., Huo L.J., Chen D.Y., Schatten H., Sun Q.Y. Protein kinase C and mitogen-activated protein kinase cascade in mouse cumulus cells: Cross talk and effect on meiotic resumption of oocyte. Biol. Reprod. 2004;70:1178–1187. doi: 10.1095/biolreprod.103.024737. PubMed DOI

Chen X., Zhou B., Yan J., Xu B., Tai P., Li J., Peng S., Zhang M., Xia G. Epidermal growth factor receptor activation by protein kinase C is necessary for FSH-induced meiotic resumption in porcine cumulus-oocyte complexes. J. Endocrinol. 2008;197:409–419. doi: 10.1677/JOE-07-0592. PubMed DOI

Yamashita Y., Hishinuma M., Shimada M. Activation of PKA, p38 MAPK and ERK1/2 by gonadotropins in cumulus cells is critical for induction of EGF-like factor and TACE/ADAM17 gene expression during in vitro maturation of porcine COCs. J. Ovarian Res. 2009;2:20. doi: 10.1186/1757-2215-2-20. PubMed DOI PMC

Yamashita Y., Okamoto M., Ikeda M., Okamoto A., Sakai M., Gunji Y., Nishimura R., Hishinuma M., Shimada M. Protein kinase C (PKC) increases TACE/ADAM17 enzyme activity in porcine ovarian somatic cells, which is essential for granulosa cell luteinization and oocyte maturation. Endocrinology. 2014;155:1080–1090. doi: 10.1210/en.2013-1655. PubMed DOI

Goldsmith Z.G., Dhanasekaran D.N. G protein regulation of MAPK networks. Oncogene. 2007;26:3122–3142. doi: 10.1038/sj.onc.1210407. PubMed DOI

Shimada M., Hernandez-Gonzalez I., Gonzalez-Robayna I., Richards J.S. Paracrine and autocrine regulation of epidermal growth factor-like factors in cumulus oocyte complexes and granulosa cells: Key roles for prostaglandin synthase 2 and progesterone receptor. Mol. Endocrinol. 2006;20:1352–1365. doi: 10.1210/me.2005-0504. PubMed DOI

Gilchrist R.B., Luciano A.M., Richani D., Zeng H.T., Wang X., Vos M.D., Sugimura S., Smitz J., Richard F.J., Thompson J.G. Oocyte maturation and quality: Role of cyclic nucleotides. Reproduction. 2016;152:R143–R157. doi: 10.1530/REP-15-0606. PubMed DOI

Egbert J.R., Shuhaibar L.C., Edmund A.B., Van Helden D.A., Robinson J.W., Uliasz T.F., Baena V., Geerts A., Wunder F., Potter L.R., et al. Dephosphorylation and inactivation of NPR2 guanylyl cyclase in granulosa cells contributes to the LH-induced decrease in cGMP that causes resumption of meiosis in rat oocytes. Development. 2014;141:3594–3604. doi: 10.1242/dev.112219. PubMed DOI PMC

Egbert J.R., Uliasz T.F., Shuhaibar L.C., Geerts A., Wunder F., Kleiman R.J., Humphrey J.M., Lampe P.D., Artemyev N.O., Rybalkin S.D., et al. Luteinizing hormone causes phosphorylation and activation of the cGMP phosphodiesterase PDE5 in rat ovarian follicles, contributing, together with PDE1 activity, to the resumption of meiosis. Biol. Reprod. 2016;94:110. doi: 10.1095/biolreprod.115.135897. PubMed DOI PMC

Shuhaibar L.C., Egbert J.R., Edmund A.B., Uliasz T.F., Dickey D.M., Yee S.P., Potter L.R., Jaffe L.A. Dephosphorylation of juxtamembrane serines and threonines of the NPR2 guanylyl cyclase is required for rapid resumption of oocyte meiosis in response to luteinizing hormone. Dev. Biol. 2016;409:194–201. doi: 10.1016/j.ydbio.2015.10.025. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...