Sequence analysis of porothramycin biosynthetic gene cluster
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
25128200
PubMed Central
PMC4194701
DOI
10.1007/s12223-014-0339-x
Knihovny.cz E-resources
- MeSH
- Anthramycin analogs & derivatives biosynthesis chemistry MeSH
- Bacterial Proteins genetics metabolism MeSH
- Molecular Sequence Data MeSH
- Molecular Structure MeSH
- Multigene Family * MeSH
- Sequence Analysis MeSH
- Streptomyces chemistry genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anthramycin MeSH
- Bacterial Proteins MeSH
- porothramycin A MeSH Browser
The biosynthetic gene cluster of porothramycin, a sequence-selective DNA alkylating compound, was identified in the genome of producing strain Streptomyces albus subsp. albus (ATCC 39897) and sequentially characterized. A 39.7 kb long DNA region contains 27 putative genes, 18 of them revealing high similarity with homologous genes from biosynthetic gene cluster of closely related pyrrolobenzodiazepine (PBD) compound anthramycin. However, considering the structures of both compounds, the number of differences in the gene composition of compared biosynthetic gene clusters was unexpectedly high, indicating participation of alternative enzymes in biosynthesis of both porothramycin precursors, anthranilate, and branched L-proline derivative. Based on the sequence analysis of putative NRPS modules Por20 and Por21, we suppose that in porothramycin biosynthesis, the methylation of anthranilate unit occurs prior to the condensation reaction, while modifications of branched proline derivative, oxidation, and dimethylation of the side chain occur on already condensed PBD core. Corresponding two specific methyltransferase encoding genes por26 and por25 were identified in the porothramycin gene cluster. Surprisingly, also methyltransferase gene por18 homologous to orf19 from anthramycin biosynthesis was detected in porothramycin gene cluster even though the appropriate biosynthetic step is missing, as suggested by ultra high-performance liquid chromatography-diode array detection-mass spectrometry (UHPLC-DAD-MS) analysis of the product in the S. albus culture broth.
See more in PubMed
Andrianopoulos A, Kourambas S, Sharp JA, Davis MA, Hynes MJ. Characterization of the Aspergillus nidulans nmrA gene involved in nitrogen metabolite repression. J Bacteriol. 1998;180:1973–1977. PubMed PMC
Baltz RH, Nguyen KT, Alexander DC (2010) Reprogramming daptomycin and A54145 biosynthesis to produce novel lipopeptide antibiotics. In: Wu-Kuang Yeh H-CY, James R. McCarthy (ed) Enzyme Technologies: Metagenomics, Evolution, Biocatalysis, and Biosynthesis. John Wiley & Sons, Inc., pp 285-307. doi:10.1002/9780470627303.ch9
Barkley MD, Thomas TJ, Maskos K, Remers WA. Steady-state fluorescence and molecular-modelling studies of tomaymycin DNA adducts. Biochemistry. 1991;30:4421–4431. doi: 10.1021/bi00232a008. PubMed DOI
Brahme NM, Gonzalez J, Mizsak S, Rolls J, Hessler E, Hurley L. Biosynthesis of the lincomycins. 2. Studies using stable isotopes on the biosynthesis of methylthiolincosaminide moiety of lincomycin A. J Am Chem Soc. 1984;106:7878–7883. doi: 10.1021/ja00337a039. DOI
Conti E, Stachelhaus T, Marahiel MA, Brick P. Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J. 1997;16:4174–4183. doi: 10.1093/emboj/16.14.4174. PubMed DOI PMC
Ellis HR. The FMN-dependent two-component monooxygenase systems. Arch Biochem Biophys. 2010;497:1–12. doi: 10.1016/j.abb.2010.02.007. PubMed DOI
Gerratana B. Biosynthesis, synthesis, and biological activities of pyrrolobenzodiazepines. Med Res Rev. 2012;32:254–293. doi: 10.1002/med.20212. PubMed DOI PMC
Hopwood DA, Bibb M, Chater K, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schrempf H (1985) Genetic manipulation of Streptomyces. A Laboratory Manual. Norwich
Hu Y, Phelan V, Ntai I, Farnet CM, Zazopoulos E, Bachmann BO. Benzodiazepine biosynthesis in Streptomyces refuineus. Chem Biol. 2007;14:691–701. doi: 10.1016/j.chembiol.2007.05.009. PubMed DOI
Hurley LH, Reck T, Thurston DE, Langley DR, Holden KG, Hertzberg RP, Hoover JRE, Gallagher G, Faucette LF, Mong SM, Johnson RK. Pyrrolo 1,4 benzodiazepine antitumor antibiotics—relationship of DNA alkylation and sequence specificity to the biological activity of natural and synthetic compounds. Chem Res Toxicol. 1988;1:258–268. doi: 10.1021/tx00005a002. PubMed DOI
Kadlcik S, Kucera T, Chalupska D, Gazak R, Koberska M, Ulanova D, Kopecky J, Kutejova E, Najmanova L, Janata J. Adaptation of an L-proline adenylation domain to use 4-propyl-L-proline in the evolution of lincosamide biosynthesis. PLoS ONE. 2013;8:16. doi: 10.1371/journal.pone.0084902. PubMed DOI PMC
Koberska M, Kopecky J, Olsovska J, Jelinkova M, Ulanova D, Man P, Flieger M, Janata J. Sequence analysis and heterologous expression of the lincomycin Biosynthetic cluster of the type strain Streptomyces lincolnensis ATCC 25466. Folia Microbiol. 2008;53:395–401. doi: 10.1007/s12223-008-0060-8. PubMed DOI
Kurnasov O, Goral V, Colabroy K, Gerdes S, Anantha S, Osterman A, Begley TP. NAD biosynthesis: Identification of the tryptophan to quinolinate pathway in bacteria. Chem Biol. 2003;10:1195–1204. doi: 10.1016/j.chembiol.2003.11.011. PubMed DOI
Leimgrub W, Stefanov V, Schenker F, Karr A, Berger J. Isolation and characterization of anthramycin a new antitumor antibiotic. J Am Chem Soc. 1965;87:5791–5793. doi: 10.1021/ja00952a050. PubMed DOI
Li W, Chou SC, Khullar A, Gerratana B. Cloning and characterization of the biosynthetic gene cluster for tomaymycin, an SJG-136 monomeric analog. Appl Environ Microbiol. 2009;75:2958–2963. doi: 10.1128/AEM.02325-08. PubMed DOI PMC
Li W, Khullar A, Chou S, Sacramo A, Gerratana B. Biosynthesis of sibiromycin, a potent antitumor antibiotic. Appl Environ Microbiol. 2009;75:2869–2878. doi: 10.1128/AEM.02326-08. PubMed DOI PMC
Magerlein BJ. Modification of lincomycin. In: Pearlman D, editor. Structure-activity relationships among the semisynthetic antibiotics. New York: Academic press; 1977. pp. 601–651.
Petrusek RL, Anderson GL, Garner TF, Fannin QL, Kaplan DJ, Zimmer SG, Hurley LH. Pyrrolo 1,4 benzodiazepine antibiotics—proposed structures and characteristics of the in vitro deoxyribonucleic-acid adducts of anthramycin, tomaymycin, sibiromycin and neothramycin-A and neothramycin-B. Biochemistry. 1981;20:1111–1119. doi: 10.1021/bi00508a011. PubMed DOI
Remers WA, Mabilia M, Hopfinger AJ. Conformations of complexes between pyrrolo 1,4 benzodiazepines and DNA segments. J Med Chem. 1986;29:2492–2503. doi: 10.1021/jm00162a012. PubMed DOI
Rottig M, Medema MH, Blin K, Weber T, Rausch C, Kohlbacher O. NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res. 2011;39:W362–W367. doi: 10.1093/nar/gkr323. PubMed DOI PMC
Stachelhaus T, Mootz HD, Marahiel MA. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol. 1999;6:493–505. doi: 10.1016/S1074-5521(99)80082-9. PubMed DOI
Tsunakawa M, Kamei H, Konishi M, Miyaki T, Oki T, Kawaguchi H. Porothramycin, a new antibiotic of the anthramycin group—production, isolation, structure and biological activity. J Antibiot. 1988;41:1366–1373. doi: 10.7164/antibiotics.41.1366. PubMed DOI
Ulanova D, Novotna J, Smutna Y, Kamenik Z, Gazak R, Sulc M, Sedmera P, Kadlcik S, Plhackova K, Janata J. Mutasynthesis of lincomycin derivatives with activity against drug-resistant staphylococci. Antimicrob Agents Chemother. 2010;54:927–930. doi: 10.1128/AAC.00918-09. PubMed DOI PMC
Vachalova K, Felsberg J, Petricek M, Spizek J, Tichy P. Copy number determination of different derivatives of the streptomycete mini-plasmid pSLG33. Folia Microbiol. 1995;40:231–237. doi: 10.1007/BF02814198. DOI
Zummo FP, Marineo S, Pace A, Civiletti F, Giardina A, Puglia AM. Tryptophan catabolism via kynurenine production in Streptomyces coelicolor: identification of three genes coding for the enzymes of tryptophan to anthranilate pathway. Appl Microbiol Biotechnol. 2012;94:719–728. doi: 10.1007/s00253-011-3833-y. PubMed DOI
GENBANK
HQ872605