Monte-Carlo modeling of the central carbon metabolism of Lactococcus lactis: insights into metabolic regulation
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/F003544/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/I00470X/1
Biotechnology and Biological Sciences Research Council - United Kingdom
EP/D508053/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/C008219/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/I004696/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/F003528/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/F003536/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/I017186/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
25268481
PubMed Central
PMC4182131
DOI
10.1371/journal.pone.0106453
PII: PONE-D-13-52409
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfát metabolismus MeSH
- biologické modely MeSH
- fruktosadifosfáty metabolismus MeSH
- Lactococcus lactis metabolismus MeSH
- metabolické sítě a dráhy MeSH
- metabolismus sacharidů * MeSH
- metoda Monte Carlo MeSH
- počítačová simulace MeSH
- statistické modely MeSH
- zpětná vazba fyziologická MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfát MeSH
- fructose-1,6-diphosphate MeSH Prohlížeč
- fruktosadifosfáty MeSH
Metabolic pathways are complex dynamic systems whose response to perturbations and environmental challenges are governed by multiple interdependencies between enzyme properties, reactions rates, and substrate levels. Understanding the dynamics arising from such a network can be greatly enhanced by the construction of a computational model that embodies the properties of the respective system. Such models aim to incorporate mechanistic details of cellular interactions to mimic the temporal behavior of the biochemical reaction system and usually require substantial knowledge of kinetic parameters to allow meaningful conclusions. Several approaches have been suggested to overcome the severe data requirements of kinetic modeling, including the use of approximative kinetics and Monte-Carlo sampling of reaction parameters. In this work, we employ a probabilistic approach to study the response of a complex metabolic system, the central metabolism of the lactic acid bacterium Lactococcus lactis, subject to perturbations and brief periods of starvation. Supplementing existing methodologies, we show that it is possible to acquire a detailed understanding of the control properties of a corresponding metabolic pathway model that is directly based on experimental observations. In particular, we delineate the role of enzymatic regulation to maintain metabolic stability and metabolic recovery after periods of starvation. It is shown that the feedforward activation of the pyruvate kinase by fructose-1,6-bisphosphate qualitatively alters the bifurcation structure of the corresponding pathway model, indicating a crucial role of enzymatic regulation to prevent metabolic collapse for low external concentrations of glucose. We argue that similar probabilistic methodologies will help our understanding of dynamic properties of small-, medium- and large-scale metabolic networks models.
Zobrazit více v PubMed
Teusink B, Smid EJ (2006) Modelling strategies for the industrial exploitation of lactic acid bacteria. Nat Rev Microbiol 4: 46–56. PubMed
Teusink B, Bachmann H, Molenaar D (2011) Systems biology of lactic acid bacteria: a critical review. Microb Cell Fact 10 Suppl 1S11. PubMed PMC
Hoefnagel MHN, Starrenburg MJC, Martens DE, Hugenholtz J, Kleerebezem M, et al. (2002) Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. Microbiology 148: 1003–1013. PubMed
Hoefnagel MHN, van der Burgt A, Martens DE, Hugenholtz J, Snoep JL (2002) Time dependent responses of glycolytic intermediates in a detailed glycolytic model of Lactococcus lactis during glucose run-out experiments. Mol Biol Rep 29: 157–161. PubMed
Oliveira AP, Nielsen J, Förster J (2005) Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol 5: 39. PubMed PMC
Oddone GM, Mills DA, Block DE (2009) A dynamic, genome-scale flux model of Lactococcus lactis to increase specific recombinant protein expression. Metab Eng 11: 367–381. PubMed
Andersen AZ, Carvalho AL, Neves AR, Santos H, Kummer U, et al. (2009) The metabolic pH response in Lactococcus lactis: an integrative experimental and modelling approach. Comput Biol Chem 33: 71–83. PubMed
Lall R, Donohue TJ, Marino S, Mitchell JC (2011) Optimizing ethanol production selectivity. Mathematical and Computer Modelling 53: 13631373.
Oh E, Lu M, Park C, Park C, Oh HB, et al. (2011) Dynamic modeling of lactic acid fermentation metabolism with Lactococcus lactis. J Microbiol Biotechnol 21: 162–169. PubMed
Levering J, Musters MWJM, Bekker M, Bellomo D, Fiedler T, et al. (2012) Role of phosphate in the central metabolism of two lactic acid bacteria–a comparative systems biology approach. FEBS J 279: 1274–1290. PubMed
Garrigues C, Loubiere P, Lindley ND, Cocaign-Bousquet M (1997) Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J Bacteriol 179: 5282–5287. PubMed PMC
Neves AR, Ramos A, Shearman C, Gasson MJ, Almeida JS, et al. (2000) Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo 13C-NMR. Eur J Biochem 267: 3859–3868. PubMed
Neves AR, Ventura R, Mansour N, Shearman C, Gasson MJ, et al. (2002) Is the glycolytic flux in Lactococcus lactis primarily controlled by the redox charge? kinetics of NAD(+) and NADH pools determined in vivo by 13C NMR. J Biol Chem 277: 28088–28098. PubMed
Neves AR, Pool WA, Kok J, Kuipers OP, Santos H (2005) Overview on sugar metabolism and its control in Lactococcus lactis - the input from in vivo NMR. FEMS Microbiol Rev 29: 531–554. PubMed
Voit E, Neves AR, Santos H (2006) The intricate side of systems biology. Proc Natl Acad Sci U S A 103: 9452–9457. PubMed PMC
Voit EO, Almeida J, Marino S, Lall R, Goel G, et al. (2006) Regulation of glycolysis in Lactococcus lactis: an unfinished systems biological case study. Syst Biol (Stevenage) 153: 286–298. PubMed
Papagianni M, Avramidis N, Filiousis G (2007) Glycolysis and the regulation of glucose transport in Lactococcus lactis spp. lactis in batch and fed-batch culture. Microb Cell Fact 6: 16. PubMed PMC
Heijnen JJ (2005) Approximative kinetic formats used in metabolic network modeling. Biotechnol Bioeng 91: 534–545. PubMed
Bulik S, Grimbs S, Huthmacher C, Selbig J, Holzhuetter HG (2009) Kinetic hybrid models composed of mechanistic and simplified enzymatic rate laws–a promising method for speeding up the kinetic modelling of complex metabolic networks. FEBS J 276: 410–424. PubMed
Wang L, Hatzimanikatis V (2006) Metabolic engineering under uncertainty. I: framework development. Metab Eng 8: 133–141. PubMed
Wang L, Hatzimanikatis V (2006) Metabolic engineering under uncertainty–II: analysis of yeast metabolism. Metab Eng 8: 142–159. PubMed
Wang L, Birol I, Hatzimanikatis V (2004) Metabolic control analysis under uncertainty: framework development and case studies. Biophys J 87: 3750–3763. PubMed PMC
Gross T, Feudel U (2006) Generalized models as a universal approach to the analysis of nonlinear dynamical systems. Phys Rev E Stat Nonlin Soft Matter Phys 73: 016205. PubMed
Steuer R, Gross T, Selbig J, Blasius B (2006) Structural kinetic modeling of metabolic networks. Proc Natl Acad Sci U S A 103: 11868–11873. PubMed PMC
Steuer R, Nesi AN, Fernie AR, Gross T, Blasius B, et al. (2007) From structure to dynamics of metabolic pathways: application to the plant mitochondrial TCA cycle. Bioinformatics 23: 1378–1385. PubMed
Tran LM, Rizk ML, Liao JC (2008) Ensemble modeling of metabolic networks. Biophys J 95: 5606–5617. PubMed PMC
Tan Y, Rivera JGL, Contador CA, Asenjo JA, Liao JC (2011) Reducing the allowable kinetic space by constructing ensemble of dynamic models with the same steady-state flux. Metab Eng 13: 60–75. PubMed
Murabito E, Smallbone K, Swinton J, Westerhoff HV, Steuer R (2011) A probabilistic approach to identify putative drug targets in biochemical networks. J R Soc Interface 8: 880–895. PubMed PMC
Girbig D, Grimbs S, Selbig J (2012) Systematic analysis of stability patterns in plant primary metabolism. PLoS One 7: e34686. PubMed PMC
Murabito E (2013) Targeting breast cancer metabolism: A metabolic control analysis approach. Curr Synthetic Sys Biol 1: 104.
Notebaart RA, van Enckevort FHJ, Francke C, Siezen RJ, Teusink B (2006) Accelerating the reconstruction of genome-scale metabolic networks. BMC Bioinformatics 7: 296. PubMed PMC
Novák L, Loubiere P (2000) The metabolic network of Lactococcus lactis: distribution of (14)Clabeled substrates between catabolic and anabolic pathways. J Bacteriol 182: 1136–1143. PubMed PMC
Liebermeister W, Uhlendorf J, Klipp E (2010) Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation. Bioinformatics 26: 1528–1534. PubMed
Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, et al. (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3: 121. PubMed PMC
Burns J, Cornish-Bowden A, Groen A, Heinrich R, Kacser H, et al. (1985) Control analysis of metabolic systems. Trends Biochem Sci 10: 16.
Heinrich R, Schuster S (1996) The Regulation Of Cellular Systems. Chapman & Hall, New York.
Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, et al. (2007) Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol 3: 1871–1878. PubMed PMC
Steuer R, Junker BH (2009) Computational models of metabolism: Stability and regulation in metabolic networks. Advances in Chemical Physics (ed Stuart A Rice).John Wiley & Sons 142.
Koebmann BJ, Andersen HW, Solem C, Jensen PR (2002) Experimental determination of control of glycolysis in Lactococcus lactis. Antonie Van Leeuwenhoek 82: 237–248. PubMed
Solem C, Koebmann BJ, Jensen PR (2003) Glyceraldehyde-3-phosphate dehydrogenase has no control over glycolytic flux in Lactococcus lactis MG1363. J Bacteriol 185: 1564–1571. PubMed PMC
Koebmann B, Solem C, Jensen PR (2005) Control analysis as a tool to understand the formation of the las operon in Lactococcus lactis. FEBS J 272: 2292–2303. PubMed
Solem C, Koebmann B, Yang F, Jensen PR (2007) The las enzymes control pyruvate metabolism in Lactococcus lactis during growth on maltose. J Bacteriol 189: 6727–6730. PubMed PMC
Koebmann BJ, Westerhoff HV, Snoep JL, Nilsson D, Jensen PR (2002) The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J Bacteriol 184: 3909–3916. PubMed PMC
Rosenfeld N, Elowitz MB, Alon U (2002) Negative autoregulation speeds the response times of transcription networks. J Mol Biol 323: 785–793. PubMed
Bluethgen N (2010) Transcriptional feedbacks in mammalian signal transduction pathways facilitate rapid and reliable protein induction. Mol Biosyst 6: 1277–1284. PubMed
Xu YF, Amador-Noguez D, Reaves ML, Feng XJ, Rabinowitz JD (2012) Ultrasensitive regulation of anapleurosis via allosteric activation of PEP carboxylase. Nat Chem Biol 8: 562–568. PubMed PMC
van Heerden J, Wortel M, Bruggeman F, Heijnen J, Bollen Y, et al. (2014) Lost in transition: Startup of glycolysis yields subpopulations of nongrowing cells. Science 343: 1245114ff. PubMed
Soh KC, Miskovic L, Hatzimanikatis V (2012) From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks. FEMS Yeast Res 12: 129–143. PubMed
Schuster S, Fell DA, Dandekar T (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol 18: 326–332. PubMed
Orth JD, Thiele I, Palsson B (2010) What is flux balance analysis? Nat Biotechnol 28: 245–248. PubMed PMC
Grimbs S, Selbig J, Bulik S, Holzhuetter HG, Steuer R (2007) The stability and robustness of metabolic states: identifying stabilizing sites in metabolic networks. Mol Syst Biol 3: 146. PubMed PMC
Rohwer JM, Hanekom AJ, Crous C, Snoep JL, Hofmeyr JHS (2006) Evaluation of a simplified generic bi-substrate rate equation for computational systems biology. Syst Biol (Stevenage) 153: 338–341. PubMed
Jönsson M, Saleihan Z, Nes IF, Holo H (2009) Construction and characterization of three lactate dehydrogenase-negative Enterococcus faecalis V583 mutants. Appl Environ Microbiol 75: 4901–4903. PubMed PMC
Wouters JA, Frenkiel H, de Vos WM, Kuipers OP, Abee T (2011) Cold shock proteins of lactococcus lactis MG1363 are involved in cryoprotection and in the production of cold-induced proteins. Appl Environ Microbiol 67: 5171–5178. PubMed PMC
Alexeeva S, de Kort B, Sawers G, Hellingwerf KJ, de Mattos MJ (2000) Effects of limited aeration and of the arcAB system on intermediary pyruvate catabolism in escherichia coli . J Bacteriol 182: 4934–4940. PubMed PMC
Mavrovouniotis ML, Stephanopoulos G, Stephanopoulos G (1990) Computer-aided synthesis of biochemical pathways. Biotechnol Bioeng 36: 1119–1132. PubMed
Mavrovouniotis ML (1991) Estimation of standard Gibbs energy changes of biotransformations. J Biol Chem 266: 14440–14445. PubMed