Mechanistic studies of the genetically encoded fluorescent protein voltage probe ArcLight
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, American Recovery and Reinvestment Act, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
R01 DC005259
NIDCD NIH HHS - United States
R01NS083875
NINDS NIH HHS - United States
R01 NS083875
NINDS NIH HHS - United States
U24 NS057631
NINDS NIH HHS - United States
DC005259-43
NIDCD NIH HHS - United States
ARRA-R01NS065110
NINDS NIH HHS - United States
U24NS057631
NINDS NIH HHS - United States
ARRA U24NS057631-03S1
NINDS NIH HHS - United States
R56 DC005259
NIDCD NIH HHS - United States
U01 NS090565
NINDS NIH HHS - United States
R01 NS065110
NINDS NIH HHS - United States
PubMed
25419571
PubMed Central
PMC4242678
DOI
10.1371/journal.pone.0113873
PII: PONE-D-14-26550
Knihovny.cz E-resources
- MeSH
- Action Potentials * MeSH
- Amino Acids chemistry genetics metabolism MeSH
- Fluorescence MeSH
- Fluorescent Dyes chemistry metabolism MeSH
- Spectrometry, Fluorescence MeSH
- HEK293 Cells MeSH
- Kinetics MeSH
- Hydrogen-Ion Concentration MeSH
- Microscopy, Confocal MeSH
- Rats MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Luminescent Proteins chemistry genetics metabolism MeSH
- Membrane Potentials MeSH
- Patch-Clamp Techniques MeSH
- Mutation, Missense MeSH
- Neurons metabolism physiology MeSH
- Prenylation MeSH
- Recombinant Fusion Proteins chemistry genetics metabolism MeSH
- Green Fluorescent Proteins chemistry genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, American Recovery and Reinvestment Act MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Amino Acids MeSH
- Arclight fusion protein MeSH Browser
- Fluorescent Dyes MeSH
- Luminescent Proteins MeSH
- PHluorin MeSH Browser
- Recombinant Fusion Proteins MeSH
- Green Fluorescent Proteins MeSH
ArcLight, a genetically encoded fluorescent protein voltage probe with a large ΔF/ΔV, is a fusion between the voltage sensing domain of the Ciona instestinalis voltage sensitive phosphatase and super ecliptic pHluorin carrying a single mutation (A227D in the fluorescent protein). Without this mutation the probe produces only a very small change in fluorescence in response to voltage deflections (∼ 1%). The large signal afforded by this mutation allows optical detection of action potentials and sub-threshold electrical events in single-trials in vitro and in vivo. However, it is unclear how this single mutation produces a probe with such a large modulation of its fluorescence output with changes in membrane potential. In this study, we identified which residues in super ecliptic pHluorin (vs eGFP) are critical for the ArcLight response, as a similarly constructed probe based on eGFP also exhibits large response amplitude if it carries these critical residues. We found that D147 is responsible for determining the pH sensitivity of the fluorescent protein used in these probes but by itself does not result in a voltage probe with a large signal. We also provide evidence that the voltage dependent signal of ArcLight is not simply sensing environmental pH changes. A two-photon polarization microscopy study showed that ArcLight's response to changes in membrane potential includes a reorientation of the super ecliptic pHluorin. We also explored different changes including modification of linker length, deletion of non-essential amino acids in the super ecliptic pHluorin, adding a farnesylation site, using tandem fluorescent proteins and other pH sensitive fluorescent proteins.
See more in PubMed
Jin L, Han Z, Platisa J, Wooltorton JR, Cohen LB, et al. (2012) Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron 75:779–785. PubMed PMC
Murata Y, Iwasaki H, Sasaki M, Inaba K, Okamura Y (2005) Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435:1239–1243. PubMed
Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195. PubMed
Cao G, Platisa J, Pieribone VA, Raccuglia D, Kunst M, et al. (2013) Genetically targeted optical electrophysiology in intact neural circuits. Cell 154:904–913. PubMed PMC
Han Z, Jin L, Platisa J, Cohen LB, Baker BJ, et al. (2013) Fluorescent Protein Voltage Probes Derived from ArcLight that Respond to Membrane Voltage Changes with Fast Kinetics. PLoS ONE 8:e81295 doi:10.1371/journal.pone.0081295 PubMed DOI PMC
Lundby A, Mutoh H, Dimitrov D, Akemann W, Knopfel T (2008) Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements. PLoS One 3:e2514. PubMed PMC
Tsutsui H, Karasawa S, Okamura Y, Miyawaki A (2008) Improving membrane voltage measurements using FRET with new fluorescent proteins. Nat Methods 5:683–685. PubMed
Tsutsui H, Jinno Y, Tomita A, Niino Y, Yamada Y, et al. (2013) Improved detection of electrical activity with a voltage probe based on a voltage-sensing phosphatase. J Physiol (Lond) 591:4427–4437. PubMed PMC
Jin L, Baker B, Mealer R, Cohen L, Pieribone V, et al. (2011) Random insertion of split-cans of the fluorescent protein venus into Shaker channels yields voltage sensitive probes with improved membrane localization in mammalian cells. J Neurosci Methods 199:1–9. PubMed PMC
Akemann W, Mutoh H, Perron A, Park YK, Iwamoto Y, et al. (2012) Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein. J Neurophysiol 108:2323–2337. PubMed
Barnett L, Platisa J, Popovic M, Pieribone VA, Hughes T (2012) A fluorescent, genetically-encoded voltage probe capable of resolving action potentials. PLoS One 7:e43454. PubMed PMC
St-Pierre F, Marshall JD, Yang Y, Gong Y, Schnitzer MJ, et al. (2014) High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat Neurosci 17:884–889. PubMed PMC
Kralj JM, Hochbaum DR, Douglass AD, Cohen AE (2011) Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein. Science 333:345–348. PubMed
Kralj JM, Douglass AD, Hochbaum DR, Maclaurin D, Cohen AE (2012) Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat Methods 9:90–95. PubMed PMC
Gong Y, Wagner MJ, Zhong Li J, Schnitzer MJ (2014) Imaging neural spiking in brain tissue using FRET-opsin protein voltage sensors. Nat Commun 5:3674. PubMed PMC
Hochbaum DR, Zhao Y, Farhi SL, Klapoetke N, Werley CA, et al. (2014) All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat Methods 11:825–833 doi:10.1038/nmeth.3000 PubMed DOI PMC
Sankaranarayanan S, De Angelis D, Rothman JE, Ryan TA (2000) The use of pHluorins for optical measurements of presynaptic activity. Biophys J 79:2199–2208. PubMed PMC
Dimitrov D, He Y, Mutoh H, Baker BJ, Cohen L, et al. (2007) Engineering and characterization of an enhanced fluorescent protein voltage sensor. PLoS One 2:e440. PubMed PMC
Lazar J, Bondar A, Timr S, Firestein SJ (2011) Two-photon polarization microscopy reveals protein structure and function. Nat Methods 8:684–690. PubMed
Li X, Zhang G, Ngo N, Zhao X, Kain SR, et al. (1997) Deletions of the Aequorea victoria green fluorescent protein define the minimal domain required for fluorescence. J Biol Chem 272:28545–28549. PubMed
Johansson MK, Fidder H, Dick D, Cook RM (2002) Intramolecular dimers: a new strategy to fluorescence quenching in dual-labeled oligonucleotide probes. J Am Chem Soc 124:6950–6956. PubMed
Lin MZ, McKeown MR, Ng H-L, Aguilera TA, Shaner NC, et al. (2009) Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals. Chem Biol 16:1169–1179. PubMed PMC
Zacharias DA, Violin JD, Newton AC, Tsien RY (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296:913–916. PubMed
Directionality of light absorption and emission in representative fluorescent proteins
The G protein Gi1 exhibits basal coupling but not preassembly with G protein-coupled receptors