Population structure of a microparasite infecting Daphnia: spatio-temporal dynamics
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
25471262
PubMed Central
PMC4265321
DOI
10.1186/s12862-014-0247-3
PII: s12862-014-0247-3
Knihovny.cz E-resources
- MeSH
- Biological Evolution MeSH
- Daphnia parasitology MeSH
- Eukaryota classification genetics MeSH
- Genetic Variation MeSH
- DNA, Ribosomal Spacer genetics MeSH
- Molecular Sequence Data MeSH
- Fresh Water MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- DNA, Ribosomal Spacer MeSH
BACKGROUND: Detailed knowledge of spatial and temporal variation in the genetic population structure of hosts and parasites is required for understanding of host - parasite coevolution. As hot-spots of contemporary coevolution in natural systems are difficult to detect and long-term studies are restricted to few systems, additional population genetic data from various host - parasite systems may provide important insights into the topic. This is particularly true for parasites, as these players have been under-investigated so far due to the lower availability of suitable molecular markers. Here, we traced genetic variation (based on sequence variants in the internal transcribed spacer region, ITS) among seven geographically isolated populations of the ichthyosporean Caullerya mesnili, a common microparasite of the cladoceran Daphnia (here, the D. longispina hybrid complex). At three sites, we also studied parasite genetic variation over time (three to four sampling points) and tested for associations between parasite genotypes and host species. RESULTS: Parasite (and host) populations were significantly structured across space, indicating limited dispersal. Moreover, the frequency of parasite genotypes varied significantly over time, suggesting rapid evolutionary change in Caullerya. However, the distribution of parasite genotypes was similar across different host species, which might in turn have important consequences for parasite epidemiology. CONCLUSIONS: The approach proposed here can be applied to track spatial and temporal changes in the population structure of other microparasite species for which sequence variation in the ITS or other highly variable genome regions has been documented but other types of polymorphic markers are lacking. Screening of parasite sequence variants allows for reliable detection of cross-species infections and, using advanced sequencing techniques in the near future, for detailed studies of parasite evolution in natural host - parasite systems.
Biological Centre AS CR Institute of Hydrobiology Ceske Budejovice Czech Republic
Department of Ecology Faculty of Science Charles University Prague Prague Czech Republic
Leibniz Institute of Freshwater Ecology and Inland Fisheries Mueggelseedamm 301 12587 Berlin Germany
The Institute of Biodiversity Science School of Life Science Fudan University Shanghai 200433 China
See more in PubMed
Koskella B, Lively CM. Advice of the rose: experimental coevolution of a trematode parasite and its snail host. Evolution. 2007;61(1):152–159. doi: 10.1111/j.1558-5646.2007.00012.x. PubMed DOI
Schulte RD, Makus C, Hasert B, Michiels NK, Schulenburg H. Host-parasite local adaptation after experimental coevolution of Caenorhabditis elegans and its microparasite Bacillus thuringiensis. Proc R Soc B. 2011;278(1719):2832–2839. doi: 10.1098/rspb.2011.0019. PubMed DOI PMC
Morran LT, Schmidt OG, Gelarden IA, Parrish RC, II, Lively CM. Running with the Red Queen: host-parasite coevolution selects for biparental sex. Science. 2011;333(6039):216–218. doi: 10.1126/science.1206360. PubMed DOI PMC
Wolinska J, King KC. Environment can alter selection in host-parasite interactions. Trends Parasitol. 2009;25(5):236–244. doi: 10.1016/j.pt.2009.02.004. PubMed DOI
Mostowy R, Engelstadter J. The impact of environmental change on host-parasite coevolutionary dynamics. Proc R Soc B. 2011;278(1716):2283–2292. doi: 10.1098/rspb.2010.2359. PubMed DOI PMC
Little TJ, Ebert D. Associations between parasitism and host genotype in natural populations of Daphnia (Crustacea: Cladocera) J Anim Ecol. 1999;68(1):134–149. doi: 10.1046/j.1365-2656.1999.00271.x. DOI
Wolinska J, Spaak P. The cost of being common: evidence from natural Daphnia populations. Evolution. 2009;63(7):1893–1901. doi: 10.1111/j.1558-5646.2009.00663.x. PubMed DOI
Decaestecker E, Gaba S, Raeymaekers JAM, Stoks R, Van Kerckhoven L, Ebert D, De Meester L. Host-parasite "Red Queen" dynamics archived in pond sediment. Nature. 2007;400:870–873. doi: 10.1038/nature06291. PubMed DOI
Gsell AS, de Senerpont Domis LN, Verhoeven KJF, Van Donk E, Ibelings BW. Chytrid epidemics may increase genetic diversity of a diatom spring-bloom. ISME J. 2013;7(10):2057–2059. doi: 10.1038/ismej.2013.73. PubMed DOI PMC
Vernon JG, Okamura B, Jones CS, Noble LR. Temporal patterns of clonality and parasitism in a population of freshwater bryozoans. Proc R Soc B. 1996;263(1375):1313–1318. doi: 10.1098/rspb.1996.0192. PubMed DOI
Siemens DH, Roy BA. Tests for parasite-mediated frequency-dependent selection in natural populations of an asexual plant species. Evol Ecol. 2005;19(4):321–338. doi: 10.1007/s10682-005-6639-5. DOI
Burdon JJ, Thompson JN. Changed patterns of resistance in a population of Linum marginale attacked by the rust pathogen Melampsora lini. J Ecol. 1995;83(2):199–206. doi: 10.2307/2261558. DOI
Jokela J, Dybdahl ME, Lively CM. The maintenance of sex, clonal dynamics, and host-parasite coevolution in a mixed population of sexual and asexual snails. Am Nat. 2009;174(S1):S43–S53. doi: 10.1086/599080. PubMed DOI
King KC, Delph LF, Jokela J, Lively CM. The geographic mosaic of sex and the Red Queen. Curr Biol. 2009;19(17):1438–1441. doi: 10.1016/j.cub.2009.06.062. PubMed DOI
Jaenike J. A hypothesis to account for the maintenance of sex within populations. Evol Theory. 1978;3:191–194.
Hamilton WD. Sex versus non-sex versus parasite. Oikos. 1980;35(2):282–290. doi: 10.2307/3544435. DOI
Sarkar SF, Guttman DS. Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Appl Environ Microbiol. 2004;70(4):1999–2012. doi: 10.1128/AEM.70.4.1999-2012.2004. PubMed DOI PMC
Orjuela-Sanchez P, Da Silva-Nunes M, Da Silva NS, Scopel KKG, Goncalves RM, Malafronte RS, Ferreira MU. Population dynamics of genetically diverse Plasmodium falciparum lineages: community-based prospective study in rural Amazonia. Parasitology. 2009;136(10):1097–1105. doi: 10.1017/S0031182009990539. PubMed DOI PMC
Ghedin E, Sengamalay NA, Shumway M, Zaborsky J, Feldblyum T, Subbu V, Spiro DJ, Sitz J, Koo H, Bolotov P, Dernovoy D, Tatusova T, Bao Y, St George K, Taylor J, Lipman DJ, Fraser CM, Taubenberger JK, Salzberg SL. Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution. Nature. 2005;437(7062):1162–1166. doi: 10.1038/nature04239. PubMed DOI
Schall JJ, Denis KMS. Microsatellite loci over a thirty-three year period for a malaria parasite (Plasmodium mexicanum): bottleneck in effective population size and effect on allele frequencies. Parasitology. 2013;140(1):21–28. doi: 10.1017/S0031182012001217. PubMed DOI
Thrall PH, Laine A-L, Ravensdale M, Nemri A, Dodds PN, Barrett LG, Burdon JJ. Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen metapopulation. Ecol Lett. 2012;15(5):425–435. doi: 10.1111/j.1461-0248.2012.01749.x. PubMed DOI PMC
Flor HH. The complementary genetic systems in flax and flax rust. Adv Genet. 1956;8:29–54. doi: 10.1016/S0065-2660(08)60498-8. DOI
Dodds PN, Rathjen JP. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet. 2010;11(8):539–548. doi: 10.1038/nrg2812. PubMed DOI
Gandon S, Capowiez Y, Dubois Y, Michalakis Y, Olivieri I. Local adaptation and gene-for-gene coevolution in a metapopulation model. Proc R Soc B. 1996;263(1373):1003–1009. doi: 10.1098/rspb.1996.0148. DOI
Gandon S. Local adaptation and the geometry of host-parasite coevolution. Ecol Lett. 2002;5(2):246–256. doi: 10.1046/j.1461-0248.2002.00305.x. DOI
Lively CM. Host-parasite coevolution and sex: do interactions between biological enemies maintain genetic variation and cross-fertilization? Bioscience. 1996;46:107–114. doi: 10.2307/1312813. DOI
Duffy MA, Ochs JH, Penczykowski RM, Civitello DJ, Klausmeier CA, Hall SR. Ecological context influences epidemic size and parasite-driven evolution. Science. 2012;335(6076):1636–1638. doi: 10.1126/science.1215429. PubMed DOI
Duncan A, Little TJ. Parasite-driven genetic change in a natural population of Daphnia. Evolution. 2007;64(4):796–803. doi: 10.1111/j.1558-5646.2007.00072.x. PubMed DOI
Yin M, Petrusek A, Seda J, Wolinska J. Fine-scale genetic analysis of Daphnia host populations infected by two virulent parasites – strong fluctuations in clonal structure at small temporal and spatial scales. Int J Parasitol. 2012;42(1):115–121. doi: 10.1016/j.ijpara.2011.11.004. PubMed DOI
Schwarzenberger A, D'Hondt S, Vyverman W, von Elert E. Seasonal succession of cyanobacterial protease inhibitors and Daphnia magna genotypes in a eutrophic Swedish lake. Aquat Sci. 2013;75(3):433–445. doi: 10.1007/s00027-013-0290-y. DOI
Haag KL, Ebert D. Single-nucleotide polymorphisms of two closely related microsporidian parasites suggest a clonal population expansion after the last glaciation. Mol Ecol. 2012;22(2):314–326. doi: 10.1111/mec.12126. PubMed DOI
Haag KL, Sheikh-Jabbari E, Ben-Ami F, Ebert D. Microsatellite and single-nucleotide polymorphisms indicate recurrent transitions to asexuality in a microsporidian parasite. J Evol Biol. 2013;26(5):1117–1128. doi: 10.1111/jeb.12125. PubMed DOI
Schwenk K, Spaak P. Evolutionary and ecological consequences of interspecific hybridization in cladocerans. Experientia. 1995;51:465–481. doi: 10.1007/BF02143199. DOI
Petrusek A, Hobaek A, Nilssen JP, Skage M, Cerny M, Brede N, Schwenk K. A taxonomic reappraisal of the European Daphnia longispina complex (Crustacea, Cladocera, Anomopoda) Zool Scr. 2008;37(5):507–519. doi: 10.1111/j.1463-6409.2008.00336.x. DOI
Wolinska J, Seda J, Koerner H, Smilauer P, Petrusek A. Spatial variation of Daphnia parasite load within individual water bodies. J Plankton Res. 2011;33(8):1284–1294. doi: 10.1093/plankt/fbr016. DOI
Lohr J, Laforsch C, Koerner H, Wolinska J. A Daphnia parasite (Caullerya mesnili) constitutes a new member of the Ichthyosporea, a group of protists near the animal-fungi divergence. J Eukaryot Microbiol. 2010;53(4):328–336. doi: 10.1111/j.1550-7408.2010.00479.x. PubMed DOI
Wolinska J, Bittner K, Ebert D, Spaak P. The coexistence of hybrid and parental Daphnia: the role of parasites. Proc R Soc B. 2006;273:1977–1983. doi: 10.1098/rspb.2006.3523. PubMed DOI PMC
Wolinska J, Spaak P, Petrusek A, Koerner H, Seda J, Giessler S. Transmission mode affects the population genetic structure of Daphnia parasites. J Evol Biol. 2011;24(2):265–273. doi: 10.1111/j.1420-9101.2010.02163.x. PubMed DOI
Bittner K, Rothhaupt KO, Ebert D. Ecological interactions of the microparasite Caullerya mesnili and its host Daphnia galeata. Limnol Oceanogr. 2002;47(1):300–305. doi: 10.4319/lo.2002.47.1.0300. DOI
Giessler S, Wolinska J. Capturing the population structure of microparasites: using ITS-sequence data and a pooled DNA approach. Mol Ecol Res. 2013;13(5):918–928. doi: 10.1111/1755-0998.12144. PubMed DOI
Ventura M, Petrusek A, Miro A, Hamrová E, Bunay D, De Meester L, Mergeay J. Local and regional founder effects in lake zooplankton persist after thousands of years despite high dispersal potential. Mol Ecol. 2014;23(5):1014–1027. doi: 10.1111/mec.12656. PubMed DOI
Hamrová E, Mergeay J, Petrusek A. Strong differences in the clonal variation of two Daphnia species from mountain lakes affected by overwintering strategy. BMC Evol Biol. 2011;11:231. doi: 10.1186/1471-2148-11-231. PubMed DOI PMC
Yin M, Wolinska J, Giessler S. Clonal diversity, clonal persistence and rapid taxon replacement in natural populations of species and hybrids of the Daphnia longispina complex. Mol Ecol. 2010;19(19):4168–4178. doi: 10.1111/j.1365-294X.2010.04807.x. PubMed DOI
Havel JE, Shurin JB. Mechanisms, effects, and scales of dispersal in freshwater zooplankton. Limnol Oceanogr. 2004;49(4):1229–1238. doi: 10.4319/lo.2004.49.4_part_2.1229. DOI
Figuerola J, Green AJ, Michot TC. Invertebrate eggs can fly: evidence of waterfowl-mediated gene flow in aquatic invertebrates. Am Nat. 2005;165(2):274–280. doi: 10.1086/427092. PubMed DOI
Louette G, Vanoverbeke J, Ortells R, De Meester L. The founding mothers: the genetic structure of newly established Daphnia populations. Oikos. 2007;116(5):728–741. doi: 10.1111/j.0030-1299.2007.15664.x. DOI
Ortells R, Vanoverbeke J, Louette G, De Meester L. Colonization of Daphnia magna in a newly created pond: founder effects and secondary immigrants. Hydrobiologia. 2014;723(1):167–179. doi: 10.1007/s10750-013-1593-7. DOI
Ebert D, Zschokke Rohringer CD, Carius HJ. Dose effects and density-dependent regulation of two microparasites of Daphnia magna. Oecologia. 2000;122(2):200–209. doi: 10.1007/PL00008847. PubMed DOI
Mendoza L, Taylor JW, Ajello L. The class mesomycetozoea: a group of microorganisms at the animal-fungal boundary. Annu Rev Microbiol. 2002;56:315–344. doi: 10.1146/annurev.micro.56.012302.160950. PubMed DOI
Marshall WL, Berbee ML. Population-level analyses indirectly reveal cryptic sex and life history traits of Pseudoperkinsus tapetis (Ichthyosporea, Opisthokonta): a unicellular relative of the animals. Mol Biol Evol. 2010;27(9):2014–2026. doi: 10.1093/molbev/msq078. PubMed DOI
Schoebel CN, Tellenbach C, Spaak P, Wolinska J. Temperature effects on parasite prevalence in a natural hybrid complex. Biol Lett. 2011;7(1):108–111. doi: 10.1098/rsbl.2010.0616. PubMed DOI PMC
Agrawal A, Lively CM. Infection genetics: gene-for-gene versus matching-alleles models and all points in between. Evol Ecol Res. 2002;4(1):79–90.
Lythgoe KA. Effects of acquired immunity and mating strategy on the genetic structure of parasite populations. Am Nat. 2002;159(5):519–529. doi: 10.1086/339462. PubMed DOI
Schmid-Hempel P, Funk CR. The distribution of genotypes of the trypanosome parasite, Crithidia bombi, in populations of its host, Bombus terrestris. Parasitology. 2004;129:147–158. doi: 10.1017/S0031182004005542. PubMed DOI
Erler S, Popp M, Wolf S, Lattorff HMG. Sex, horizontal transmission, and multiple hosts prevent local adaptation of Crithidia bombi, a parasite of bumblebees (Bombus spp.) Ecol Evol. 2012;2(5):930–940. doi: 10.1002/ece3.250. PubMed DOI PMC
Salathe RM, Schmid-Hempel P. The genotypic structure of a multi-host bumblebee parasite suggests a role for ecological niche overlap. Plos One. 2011;6:8. doi: 10.1371/journal.pone.0022054. PubMed DOI PMC
Seda J, Petrusek A, Machacek J, Smilauer P. Spatial distribution of the Daphnia longispina species complex and other planktonic crustaceans in the heterogeneous environment of canyon-shaped reservoirs. J Plankton Res. 2007;29(7):619–628. doi: 10.1093/plankt/fbm044. DOI
Petrusek A, Seda J, Machacek J, Ruthova S, Smilauer P. Daphnia hybridization along ecological gradients in pelagic environments: the potential for the presence of hybrid zones in plankton. Philos Trans R Soc Lond B. 2008;363(1505):2931–2941. doi: 10.1098/rstb.2008.0026. PubMed DOI PMC
Floate KD, Whitham TG. The hybrid bridge hypothesis: host shifting via plant hybrid swarms. Am Nat. 1993;141:651–662. doi: 10.1086/285497. PubMed DOI
Holt RD, Dobson AP, Begon M, Bowers RG, Schauber EM. Parasite establishment in host communities. Ecol Lett. 2003;6(9):837–842. doi: 10.1046/j.1461-0248.2003.00501.x. DOI
Dobson A. Population dynamics of pathogens with multiple host species. Am Nat. 2004;164(5):S64–S78. doi: 10.1086/424681. PubMed DOI
Archie EA, Ezenwa VO. Population genetic structure and history of a generalist parasite infecting multiple sympatric host species. Int J Parasitol. 2011;41(1):89–98. doi: 10.1016/j.ijpara.2010.07.014. PubMed DOI
Andras JP, Ebert D. A novel approach to parasite population genetics: experimental infection reveals geographic differentiation, recombination and host-mediated population structure in pasteuria ramosa, a bacterial parasite of daphnia. Mol Ecol. 2013;22(4):972–986. doi: 10.1111/mec.12159. PubMed DOI
Carriconde F, Gardes M, Jargeat P, Heilmann-Clausen J, Mouhamadou B, Gryta H. Population evidence of cryptic species and geographical structure in the cosmopolitan ectomycorrhizal fungus, Tricholoma Scalpturatum. Microb Ecol. 2008;56(3):513–524. doi: 10.1007/s00248-008-9370-2. PubMed DOI
Stukenbrock EH, McDonald BA. Population genetics of fungal and oomycete effectors involved in gene-for-gene interactions. Mol Plant-Microbe Interact. 2009;22(4):371–380. doi: 10.1094/MPMI-22-4-0371. PubMed DOI
Stahl EA, Dwyer G, Mauricio R, Kreitman M, Bergelson J. Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature. 1999;400(6745):667–671. doi: 10.1038/23260. PubMed DOI
Tollenaere C, Susi H, Nokso-Koivisto J, Koskinen P, Tack A, Auvinen P, Paulin L, Frilander MJ, Lehtonen R, Laine A-L. SNP design from 454 sequencing of Podosphaera plantaginis transcriptome reveals a genetically diverse pathogen metapopulation with high levels of mixed-genotype infection. Plos One. 2012;7:12. PubMed PMC
Qi W, Kaeser M, Roeltgen K, Yeboah-Manu D, Pluschke G. Genomic diversity and evolution of Mycobacterium ulcerans revealed by next-generation sequencing. PLoS Pathog. 2009;5:9. doi: 10.1371/journal.ppat.1000580. PubMed DOI PMC
Schoebel CN, Jung E, Prospero S. Development of new polymorphic microsatellite markers for three closely related plant-pathogenic Phytophthora species using 454-pyrosequencing and their potential applications. Phytopathology. 2013;103(10):1020–1027. doi: 10.1094/PHYTO-01-13-0026-R. PubMed DOI
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:91–98.
Clement M, Posada D, Crandall KA. TCS: a computer program to estimate gene genealogies. Mol Ecol. 2000;9(10):1657–1659. doi: 10.1046/j.1365-294x.2000.01020.x. PubMed DOI
Brede N, Thielsch A, Sandrock C, Spaak P, Keller B, Streit B, Schwenk K. Microsatellite markers for European Daphnia. Mol Ecol Notes. 2006;6(2):536–539. doi: 10.1111/j.1471-8286.2005.01218.x. DOI
Bélkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F: GENETIX 4.05, logiciel sous windows TM pour la génétique des populations. Laboratoire génome, populations, interactions, CNRS UMR 5000, université de Montpellier II, Montpellier (France).Available from URL: http://kimura.univ-montp2.fr/genetix/.
Anderson EC, Thompson EA. A model-based method for identifying species hybrids using multilocus genetic data. Genetics. 2002;160(3):1217–1229. PubMed PMC
Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Mol Ecol Res. 2010;10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x. PubMed DOI
Rice WR. Analyzing tables of statistical tests. Evolution. 1989;43:223–225. doi: 10.2307/2409177. PubMed DOI
Dryad
10.5061/dryad.6773H, 10.5061/dryad.8C1D0
GENBANK
HQ219692, HQ219693, HQ219694, HQ219695, HQ219696, HQ219697, HQ219698, HQ219699, HQ219700, HQ219701, HQ219702, HQ219703, HQ219704, HQ219705, HQ219706, HQ219707, HQ219708