• This record comes from PubMed

Population structure of a microparasite infecting Daphnia: spatio-temporal dynamics

. 2014 Dec 04 ; 14 () : 247. [epub] 20141204

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 25471262
PubMed Central PMC4265321
DOI 10.1186/s12862-014-0247-3
PII: s12862-014-0247-3
Knihovny.cz E-resources

BACKGROUND: Detailed knowledge of spatial and temporal variation in the genetic population structure of hosts and parasites is required for understanding of host - parasite coevolution. As hot-spots of contemporary coevolution in natural systems are difficult to detect and long-term studies are restricted to few systems, additional population genetic data from various host - parasite systems may provide important insights into the topic. This is particularly true for parasites, as these players have been under-investigated so far due to the lower availability of suitable molecular markers. Here, we traced genetic variation (based on sequence variants in the internal transcribed spacer region, ITS) among seven geographically isolated populations of the ichthyosporean Caullerya mesnili, a common microparasite of the cladoceran Daphnia (here, the D. longispina hybrid complex). At three sites, we also studied parasite genetic variation over time (three to four sampling points) and tested for associations between parasite genotypes and host species. RESULTS: Parasite (and host) populations were significantly structured across space, indicating limited dispersal. Moreover, the frequency of parasite genotypes varied significantly over time, suggesting rapid evolutionary change in Caullerya. However, the distribution of parasite genotypes was similar across different host species, which might in turn have important consequences for parasite epidemiology. CONCLUSIONS: The approach proposed here can be applied to track spatial and temporal changes in the population structure of other microparasite species for which sequence variation in the ITS or other highly variable genome regions has been documented but other types of polymorphic markers are lacking. Screening of parasite sequence variants allows for reliable detection of cross-species infections and, using advanced sequencing techniques in the near future, for detailed studies of parasite evolution in natural host - parasite systems.

See more in PubMed

Koskella B, Lively CM. Advice of the rose: experimental coevolution of a trematode parasite and its snail host. Evolution. 2007;61(1):152–159. doi: 10.1111/j.1558-5646.2007.00012.x. PubMed DOI

Schulte RD, Makus C, Hasert B, Michiels NK, Schulenburg H. Host-parasite local adaptation after experimental coevolution of Caenorhabditis elegans and its microparasite Bacillus thuringiensis. Proc R Soc B. 2011;278(1719):2832–2839. doi: 10.1098/rspb.2011.0019. PubMed DOI PMC

Morran LT, Schmidt OG, Gelarden IA, Parrish RC, II, Lively CM. Running with the Red Queen: host-parasite coevolution selects for biparental sex. Science. 2011;333(6039):216–218. doi: 10.1126/science.1206360. PubMed DOI PMC

Wolinska J, King KC. Environment can alter selection in host-parasite interactions. Trends Parasitol. 2009;25(5):236–244. doi: 10.1016/j.pt.2009.02.004. PubMed DOI

Mostowy R, Engelstadter J. The impact of environmental change on host-parasite coevolutionary dynamics. Proc R Soc B. 2011;278(1716):2283–2292. doi: 10.1098/rspb.2010.2359. PubMed DOI PMC

Little TJ, Ebert D. Associations between parasitism and host genotype in natural populations of Daphnia (Crustacea: Cladocera) J Anim Ecol. 1999;68(1):134–149. doi: 10.1046/j.1365-2656.1999.00271.x. DOI

Wolinska J, Spaak P. The cost of being common: evidence from natural Daphnia populations. Evolution. 2009;63(7):1893–1901. doi: 10.1111/j.1558-5646.2009.00663.x. PubMed DOI

Decaestecker E, Gaba S, Raeymaekers JAM, Stoks R, Van Kerckhoven L, Ebert D, De Meester L. Host-parasite "Red Queen" dynamics archived in pond sediment. Nature. 2007;400:870–873. doi: 10.1038/nature06291. PubMed DOI

Gsell AS, de Senerpont Domis LN, Verhoeven KJF, Van Donk E, Ibelings BW. Chytrid epidemics may increase genetic diversity of a diatom spring-bloom. ISME J. 2013;7(10):2057–2059. doi: 10.1038/ismej.2013.73. PubMed DOI PMC

Vernon JG, Okamura B, Jones CS, Noble LR. Temporal patterns of clonality and parasitism in a population of freshwater bryozoans. Proc R Soc B. 1996;263(1375):1313–1318. doi: 10.1098/rspb.1996.0192. PubMed DOI

Siemens DH, Roy BA. Tests for parasite-mediated frequency-dependent selection in natural populations of an asexual plant species. Evol Ecol. 2005;19(4):321–338. doi: 10.1007/s10682-005-6639-5. DOI

Burdon JJ, Thompson JN. Changed patterns of resistance in a population of Linum marginale attacked by the rust pathogen Melampsora lini. J Ecol. 1995;83(2):199–206. doi: 10.2307/2261558. DOI

Jokela J, Dybdahl ME, Lively CM. The maintenance of sex, clonal dynamics, and host-parasite coevolution in a mixed population of sexual and asexual snails. Am Nat. 2009;174(S1):S43–S53. doi: 10.1086/599080. PubMed DOI

King KC, Delph LF, Jokela J, Lively CM. The geographic mosaic of sex and the Red Queen. Curr Biol. 2009;19(17):1438–1441. doi: 10.1016/j.cub.2009.06.062. PubMed DOI

Jaenike J. A hypothesis to account for the maintenance of sex within populations. Evol Theory. 1978;3:191–194.

Hamilton WD. Sex versus non-sex versus parasite. Oikos. 1980;35(2):282–290. doi: 10.2307/3544435. DOI

Sarkar SF, Guttman DS. Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Appl Environ Microbiol. 2004;70(4):1999–2012. doi: 10.1128/AEM.70.4.1999-2012.2004. PubMed DOI PMC

Orjuela-Sanchez P, Da Silva-Nunes M, Da Silva NS, Scopel KKG, Goncalves RM, Malafronte RS, Ferreira MU. Population dynamics of genetically diverse Plasmodium falciparum lineages: community-based prospective study in rural Amazonia. Parasitology. 2009;136(10):1097–1105. doi: 10.1017/S0031182009990539. PubMed DOI PMC

Ghedin E, Sengamalay NA, Shumway M, Zaborsky J, Feldblyum T, Subbu V, Spiro DJ, Sitz J, Koo H, Bolotov P, Dernovoy D, Tatusova T, Bao Y, St George K, Taylor J, Lipman DJ, Fraser CM, Taubenberger JK, Salzberg SL. Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution. Nature. 2005;437(7062):1162–1166. doi: 10.1038/nature04239. PubMed DOI

Schall JJ, Denis KMS. Microsatellite loci over a thirty-three year period for a malaria parasite (Plasmodium mexicanum): bottleneck in effective population size and effect on allele frequencies. Parasitology. 2013;140(1):21–28. doi: 10.1017/S0031182012001217. PubMed DOI

Thrall PH, Laine A-L, Ravensdale M, Nemri A, Dodds PN, Barrett LG, Burdon JJ. Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen metapopulation. Ecol Lett. 2012;15(5):425–435. doi: 10.1111/j.1461-0248.2012.01749.x. PubMed DOI PMC

Flor HH. The complementary genetic systems in flax and flax rust. Adv Genet. 1956;8:29–54. doi: 10.1016/S0065-2660(08)60498-8. DOI

Dodds PN, Rathjen JP. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet. 2010;11(8):539–548. doi: 10.1038/nrg2812. PubMed DOI

Gandon S, Capowiez Y, Dubois Y, Michalakis Y, Olivieri I. Local adaptation and gene-for-gene coevolution in a metapopulation model. Proc R Soc B. 1996;263(1373):1003–1009. doi: 10.1098/rspb.1996.0148. DOI

Gandon S. Local adaptation and the geometry of host-parasite coevolution. Ecol Lett. 2002;5(2):246–256. doi: 10.1046/j.1461-0248.2002.00305.x. DOI

Lively CM. Host-parasite coevolution and sex: do interactions between biological enemies maintain genetic variation and cross-fertilization? Bioscience. 1996;46:107–114. doi: 10.2307/1312813. DOI

Duffy MA, Ochs JH, Penczykowski RM, Civitello DJ, Klausmeier CA, Hall SR. Ecological context influences epidemic size and parasite-driven evolution. Science. 2012;335(6076):1636–1638. doi: 10.1126/science.1215429. PubMed DOI

Duncan A, Little TJ. Parasite-driven genetic change in a natural population of Daphnia. Evolution. 2007;64(4):796–803. doi: 10.1111/j.1558-5646.2007.00072.x. PubMed DOI

Yin M, Petrusek A, Seda J, Wolinska J. Fine-scale genetic analysis of Daphnia host populations infected by two virulent parasites – strong fluctuations in clonal structure at small temporal and spatial scales. Int J Parasitol. 2012;42(1):115–121. doi: 10.1016/j.ijpara.2011.11.004. PubMed DOI

Schwarzenberger A, D'Hondt S, Vyverman W, von Elert E. Seasonal succession of cyanobacterial protease inhibitors and Daphnia magna genotypes in a eutrophic Swedish lake. Aquat Sci. 2013;75(3):433–445. doi: 10.1007/s00027-013-0290-y. DOI

Haag KL, Ebert D. Single-nucleotide polymorphisms of two closely related microsporidian parasites suggest a clonal population expansion after the last glaciation. Mol Ecol. 2012;22(2):314–326. doi: 10.1111/mec.12126. PubMed DOI

Haag KL, Sheikh-Jabbari E, Ben-Ami F, Ebert D. Microsatellite and single-nucleotide polymorphisms indicate recurrent transitions to asexuality in a microsporidian parasite. J Evol Biol. 2013;26(5):1117–1128. doi: 10.1111/jeb.12125. PubMed DOI

Schwenk K, Spaak P. Evolutionary and ecological consequences of interspecific hybridization in cladocerans. Experientia. 1995;51:465–481. doi: 10.1007/BF02143199. DOI

Petrusek A, Hobaek A, Nilssen JP, Skage M, Cerny M, Brede N, Schwenk K. A taxonomic reappraisal of the European Daphnia longispina complex (Crustacea, Cladocera, Anomopoda) Zool Scr. 2008;37(5):507–519. doi: 10.1111/j.1463-6409.2008.00336.x. DOI

Wolinska J, Seda J, Koerner H, Smilauer P, Petrusek A. Spatial variation of Daphnia parasite load within individual water bodies. J Plankton Res. 2011;33(8):1284–1294. doi: 10.1093/plankt/fbr016. DOI

Lohr J, Laforsch C, Koerner H, Wolinska J. A Daphnia parasite (Caullerya mesnili) constitutes a new member of the Ichthyosporea, a group of protists near the animal-fungi divergence. J Eukaryot Microbiol. 2010;53(4):328–336. doi: 10.1111/j.1550-7408.2010.00479.x. PubMed DOI

Wolinska J, Bittner K, Ebert D, Spaak P. The coexistence of hybrid and parental Daphnia: the role of parasites. Proc R Soc B. 2006;273:1977–1983. doi: 10.1098/rspb.2006.3523. PubMed DOI PMC

Wolinska J, Spaak P, Petrusek A, Koerner H, Seda J, Giessler S. Transmission mode affects the population genetic structure of Daphnia parasites. J Evol Biol. 2011;24(2):265–273. doi: 10.1111/j.1420-9101.2010.02163.x. PubMed DOI

Bittner K, Rothhaupt KO, Ebert D. Ecological interactions of the microparasite Caullerya mesnili and its host Daphnia galeata. Limnol Oceanogr. 2002;47(1):300–305. doi: 10.4319/lo.2002.47.1.0300. DOI

Giessler S, Wolinska J. Capturing the population structure of microparasites: using ITS-sequence data and a pooled DNA approach. Mol Ecol Res. 2013;13(5):918–928. doi: 10.1111/1755-0998.12144. PubMed DOI

Ventura M, Petrusek A, Miro A, Hamrová E, Bunay D, De Meester L, Mergeay J. Local and regional founder effects in lake zooplankton persist after thousands of years despite high dispersal potential. Mol Ecol. 2014;23(5):1014–1027. doi: 10.1111/mec.12656. PubMed DOI

Hamrová E, Mergeay J, Petrusek A. Strong differences in the clonal variation of two Daphnia species from mountain lakes affected by overwintering strategy. BMC Evol Biol. 2011;11:231. doi: 10.1186/1471-2148-11-231. PubMed DOI PMC

Yin M, Wolinska J, Giessler S. Clonal diversity, clonal persistence and rapid taxon replacement in natural populations of species and hybrids of the Daphnia longispina complex. Mol Ecol. 2010;19(19):4168–4178. doi: 10.1111/j.1365-294X.2010.04807.x. PubMed DOI

Havel JE, Shurin JB. Mechanisms, effects, and scales of dispersal in freshwater zooplankton. Limnol Oceanogr. 2004;49(4):1229–1238. doi: 10.4319/lo.2004.49.4_part_2.1229. DOI

Figuerola J, Green AJ, Michot TC. Invertebrate eggs can fly: evidence of waterfowl-mediated gene flow in aquatic invertebrates. Am Nat. 2005;165(2):274–280. doi: 10.1086/427092. PubMed DOI

Louette G, Vanoverbeke J, Ortells R, De Meester L. The founding mothers: the genetic structure of newly established Daphnia populations. Oikos. 2007;116(5):728–741. doi: 10.1111/j.0030-1299.2007.15664.x. DOI

Ortells R, Vanoverbeke J, Louette G, De Meester L. Colonization of Daphnia magna in a newly created pond: founder effects and secondary immigrants. Hydrobiologia. 2014;723(1):167–179. doi: 10.1007/s10750-013-1593-7. DOI

Ebert D, Zschokke Rohringer CD, Carius HJ. Dose effects and density-dependent regulation of two microparasites of Daphnia magna. Oecologia. 2000;122(2):200–209. doi: 10.1007/PL00008847. PubMed DOI

Mendoza L, Taylor JW, Ajello L. The class mesomycetozoea: a group of microorganisms at the animal-fungal boundary. Annu Rev Microbiol. 2002;56:315–344. doi: 10.1146/annurev.micro.56.012302.160950. PubMed DOI

Marshall WL, Berbee ML. Population-level analyses indirectly reveal cryptic sex and life history traits of Pseudoperkinsus tapetis (Ichthyosporea, Opisthokonta): a unicellular relative of the animals. Mol Biol Evol. 2010;27(9):2014–2026. doi: 10.1093/molbev/msq078. PubMed DOI

Schoebel CN, Tellenbach C, Spaak P, Wolinska J. Temperature effects on parasite prevalence in a natural hybrid complex. Biol Lett. 2011;7(1):108–111. doi: 10.1098/rsbl.2010.0616. PubMed DOI PMC

Agrawal A, Lively CM. Infection genetics: gene-for-gene versus matching-alleles models and all points in between. Evol Ecol Res. 2002;4(1):79–90.

Lythgoe KA. Effects of acquired immunity and mating strategy on the genetic structure of parasite populations. Am Nat. 2002;159(5):519–529. doi: 10.1086/339462. PubMed DOI

Schmid-Hempel P, Funk CR. The distribution of genotypes of the trypanosome parasite, Crithidia bombi, in populations of its host, Bombus terrestris. Parasitology. 2004;129:147–158. doi: 10.1017/S0031182004005542. PubMed DOI

Erler S, Popp M, Wolf S, Lattorff HMG. Sex, horizontal transmission, and multiple hosts prevent local adaptation of Crithidia bombi, a parasite of bumblebees (Bombus spp.) Ecol Evol. 2012;2(5):930–940. doi: 10.1002/ece3.250. PubMed DOI PMC

Salathe RM, Schmid-Hempel P. The genotypic structure of a multi-host bumblebee parasite suggests a role for ecological niche overlap. Plos One. 2011;6:8. doi: 10.1371/journal.pone.0022054. PubMed DOI PMC

Seda J, Petrusek A, Machacek J, Smilauer P. Spatial distribution of the Daphnia longispina species complex and other planktonic crustaceans in the heterogeneous environment of canyon-shaped reservoirs. J Plankton Res. 2007;29(7):619–628. doi: 10.1093/plankt/fbm044. DOI

Petrusek A, Seda J, Machacek J, Ruthova S, Smilauer P. Daphnia hybridization along ecological gradients in pelagic environments: the potential for the presence of hybrid zones in plankton. Philos Trans R Soc Lond B. 2008;363(1505):2931–2941. doi: 10.1098/rstb.2008.0026. PubMed DOI PMC

Floate KD, Whitham TG. The hybrid bridge hypothesis: host shifting via plant hybrid swarms. Am Nat. 1993;141:651–662. doi: 10.1086/285497. PubMed DOI

Holt RD, Dobson AP, Begon M, Bowers RG, Schauber EM. Parasite establishment in host communities. Ecol Lett. 2003;6(9):837–842. doi: 10.1046/j.1461-0248.2003.00501.x. DOI

Dobson A. Population dynamics of pathogens with multiple host species. Am Nat. 2004;164(5):S64–S78. doi: 10.1086/424681. PubMed DOI

Archie EA, Ezenwa VO. Population genetic structure and history of a generalist parasite infecting multiple sympatric host species. Int J Parasitol. 2011;41(1):89–98. doi: 10.1016/j.ijpara.2010.07.014. PubMed DOI

Andras JP, Ebert D. A novel approach to parasite population genetics: experimental infection reveals geographic differentiation, recombination and host-mediated population structure in pasteuria ramosa, a bacterial parasite of daphnia. Mol Ecol. 2013;22(4):972–986. doi: 10.1111/mec.12159. PubMed DOI

Carriconde F, Gardes M, Jargeat P, Heilmann-Clausen J, Mouhamadou B, Gryta H. Population evidence of cryptic species and geographical structure in the cosmopolitan ectomycorrhizal fungus, Tricholoma Scalpturatum. Microb Ecol. 2008;56(3):513–524. doi: 10.1007/s00248-008-9370-2. PubMed DOI

Stukenbrock EH, McDonald BA. Population genetics of fungal and oomycete effectors involved in gene-for-gene interactions. Mol Plant-Microbe Interact. 2009;22(4):371–380. doi: 10.1094/MPMI-22-4-0371. PubMed DOI

Stahl EA, Dwyer G, Mauricio R, Kreitman M, Bergelson J. Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature. 1999;400(6745):667–671. doi: 10.1038/23260. PubMed DOI

Tollenaere C, Susi H, Nokso-Koivisto J, Koskinen P, Tack A, Auvinen P, Paulin L, Frilander MJ, Lehtonen R, Laine A-L. SNP design from 454 sequencing of Podosphaera plantaginis transcriptome reveals a genetically diverse pathogen metapopulation with high levels of mixed-genotype infection. Plos One. 2012;7:12. PubMed PMC

Qi W, Kaeser M, Roeltgen K, Yeboah-Manu D, Pluschke G. Genomic diversity and evolution of Mycobacterium ulcerans revealed by next-generation sequencing. PLoS Pathog. 2009;5:9. doi: 10.1371/journal.ppat.1000580. PubMed DOI PMC

Schoebel CN, Jung E, Prospero S. Development of new polymorphic microsatellite markers for three closely related plant-pathogenic Phytophthora species using 454-pyrosequencing and their potential applications. Phytopathology. 2013;103(10):1020–1027. doi: 10.1094/PHYTO-01-13-0026-R. PubMed DOI

Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:91–98.

Clement M, Posada D, Crandall KA. TCS: a computer program to estimate gene genealogies. Mol Ecol. 2000;9(10):1657–1659. doi: 10.1046/j.1365-294x.2000.01020.x. PubMed DOI

Brede N, Thielsch A, Sandrock C, Spaak P, Keller B, Streit B, Schwenk K. Microsatellite markers for European Daphnia. Mol Ecol Notes. 2006;6(2):536–539. doi: 10.1111/j.1471-8286.2005.01218.x. DOI

Bélkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F: GENETIX 4.05, logiciel sous windows TM pour la génétique des populations. Laboratoire génome, populations, interactions, CNRS UMR 5000, université de Montpellier II, Montpellier (France).Available from URL: http://kimura.univ-montp2.fr/genetix/.

Anderson EC, Thompson EA. A model-based method for identifying species hybrids using multilocus genetic data. Genetics. 2002;160(3):1217–1229. PubMed PMC

Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Mol Ecol Res. 2010;10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x. PubMed DOI

Rice WR. Analyzing tables of statistical tests. Evolution. 1989;43:223–225. doi: 10.2307/2409177. PubMed DOI

See more in PubMed

Dryad
10.5061/dryad.6773H, 10.5061/dryad.8C1D0

GENBANK
HQ219692, HQ219693, HQ219694, HQ219695, HQ219696, HQ219697, HQ219698, HQ219699, HQ219700, HQ219701, HQ219702, HQ219703, HQ219704, HQ219705, HQ219706, HQ219707, HQ219708

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...