Interconnection between actin cytoskeleton and plant defense signaling
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
25482795
PubMed Central
PMC4622444
DOI
10.4161/15592324.2014.976486
Knihovny.cz E-zdroje
- Klíčová slova
- actin, cytoskeleton, pathogen, plant defense, signaling,
- MeSH
- aktiny metabolismus MeSH
- imunita rostlin genetika MeSH
- mikrofilamenta metabolismus MeSH
- rostliny genetika imunologie metabolismus MeSH
- signální transdukce * MeSH
- transkriptom genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- aktiny MeSH
Actin cytoskeleton is the fundamental structural component of eukaryotic cells. It has a role in numerous elementary cellular processes such as reproduction, development and also in response to abiotic and biotic stimuli. Remarkably, the role of actin cytoskeleton in plant response to pathogens is getting to be under magnifying glass. Based on microscopic studies, most of the data showed, that actin plays an important role in formation of physiological barrier in the site of infection. Actin dynamics is involved in the transport of antimicrobial compounds and cell wall fortifying components (e.g. callose) to the site of infection. Also the role in PTI (pathogen triggered immunity) and ETI (effector triggered immunity) was recently indicated. On the other hand much less is known about the transcriptome reprogramming upon changes in actin dynamics. Our recently published results showed that drugs inhibiting actin polymerization (latrunculin B, cytochalasin E) cause the induction of genes which are involved in salicylic acid (SA) signaling pathway. In this addendum we would like to highlight in more details current state of knowledge concerning the involvement of actin dynamics in plant defense signaling.
doi: 10.1016/j.plantsci.2014.03.002 PubMed
Zobrazit více v PubMed
Jones JD, Dangl JL. The plant immune system. Nature 2006; 444:323-9; PMID:17108957; http://dx.doi.org/10.1038/nature05286 PubMed DOI
Spoel SH, Dong XN. How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 2012; 12:89-100; PMID:22273771; http://dx.doi.org/10.1038/nri3141 PubMed DOI
Day B, Henty JL, Porter KJ, Staiger CJ. The pathogen-actin connection: a platform for defense signaling in plants. Annu Rev Phytopathol 2011; 49:483-506; PMID:21495845; http://dx.doi.org/10.1146/annurev-phyto-072910-095426 PubMed DOI
Hardham AR, Takemoto D, White RG. Rapid and dynamic subcellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack. BMC Plant Biol 2008; 8:63; PMID:18513448; http://dx.doi.org/10.1186/1471-2229-8-63 PubMed DOI PMC
Tian M, Chaudhry F, Ruzicka DR, Meagher RB, Staiger CJ, Day B. Arabidopsis actin-depolymerizing factor AtADF4 mediates defense signal transduction triggered by the Pseudomonas syringae effector AvrPphB. Plant Physiol 2009; 150:815-24; PMID:19346440; http://dx.doi.org/10.1104/pp.109.137604 PubMed DOI PMC
Kim M, Hepler PK, Eun SO, Ha KS, Lee Y. Actin filaments in mature guard cells are radially distributed and involved in stomatal movement. Plant Physiol 1995; 109:1077-84; PMID:12228654 PubMed PMC
MacRobbie EA, Kurup S. Signalling mechanisms in the regulation of vacuolar ion release in guard cells. New Phytol 2007; 175:630-40; PMID:17688580; http://dx.doi.org/10.1111/j.1469-8137.2007.02131.x PubMed DOI
Morton WM, Ayscough KR, McLaughlin PJ. Latrunculin alters the actin-monomer subunit interface to prevent polymerization. Nat Cell Biol 2000; 2:376-8; PMID:10854330; http://dx.doi.org/10.1038/35014075 PubMed DOI
Baluska F, Jasik J, Edelmann HG, Salajova T, Volkmann D. Latrunculin B-induced plant dwarfism: plant cell elongation is F-actin-dependent. Dev Biol 2001; 231:113-24; PMID:11180956; http://dx.doi.org/10.1006/dbio.2000.0115 PubMed DOI
Yamamoto K, Kiss JZ. Disruption of the actin cytoskeleton results in the promotion of gravitropism in inflorescence stems and hypocotyls of arabidopsis. Plant Physiol 2002; 128:669-81; PMID:11842170; http://dx.doi.org/10.1104/pp.010804 PubMed DOI PMC
Higaki T, Kutsuna N, Sano T, Kondo N, Hasezawa S. Quantification and cluster analysis of actin cytoskeletal structures in plant cells: role of actin bundling in stomatal movement during diurnal cycles in Arabidopsis guard cells. Plant J 2010; 61:156-65; PMID:20092030; http://dx.doi.org/10.1111/j.1365-313X.2009.04032.x PubMed DOI
Koh S, Andre A, Edwards H, Ehrhardt D, Somerville S. Arabidopsis thaliana subcellular responses to compatible Erysiphe cichoracearum infections. Plant J 2005; 44:516-29; PMID:16236160; http://dx.doi.org/10.1111/j.1365-313X.2005.02545.x PubMed DOI
Bestwick CS, Bennett MH, Mansfield JW. Hrp mutant of Pseudomonas syringae pv phaseolicola induces cell wall alterations but not membrane damage leading to the hypersensitive reaction in lettuce. Plant Physiol 1995; 108:503-16; PMID:12228488 PubMed PMC
Lee YJ, Szymlanski A, Nielsen E, Yang Z. Rho-GTPase-dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth. J Cell Biol 2008; 181:1155-68; PMID:18591430; http://dx.doi.org/10.1083/jcb.200801086 PubMed DOI PMC
Prokhnevsky AI, Peremyslov VV, Dolja VV. Overlapping functions of the four class XI myosins in Arabidopsis growth, root hair elongation, and organelle motility. Proc Natl Acad Sci USA 2008; 105:19744-9; PMID:19060218; http://dx.doi.org/10.1073/pnas.0810730105 PubMed DOI PMC
Jarosch B, Collins NC, Zellerhoff N, Schaffrath U. RAR1, ROR1, and the actin cytoskeleton contribute to basal resistance to Magnaporthe grisea in barley. Mol Plant-Microb Interact 2005; 18:397-404; http://dx.doi.org/10.1094/MPMI-18-0397 PubMed DOI
Kobayashi I, Hakuno H. Actin-related defense mechanism to reject penetration attempt by a non-pathogen is maintained in tobacco BY-2 cells. Planta 2003; 217:340-5; PMID:12728320 PubMed
Takemoto D, Jones DA, Hardham AR. Re-organization of the cytoskeleton and endoplasmic reticulum in the Arabidopsis pen1-1 mutant inoculated with the non-adapted powdery mildew pathogen, Blumeria graminis f. sp. hordei. Mol Plant Pathol 2006; 7:553-63; PMID:20507469; http://dx.doi.org/10.1111/j.1364-3703.2006.00360.x PubMed DOI
Kang Y, Jelenska J, Cecchini NM, Li Y, Lee MW, Kovar DR, Greenberg JT. HopW1 from Pseudomonas syringae disrupts the actin cytoskeleton to promote virulence in Arabidopsis. PLoS Pathog 2014; 10:e1004232; PMID:24968323; http://dx.doi.org/10.1371/journal.ppat.1004232 PubMed DOI PMC
Henty-Ridilla JL, Shimono M, Li J, Chang JH, Day B, Staiger CJ. The plant actin cytoskeleton responds to signals from microbe-associated molecular patterns. PLoS Pathog 2013; 9:e1003290; PMID:23593000; http://dx.doi.org/10.1371/journal.ppat.1003290 PubMed DOI PMC
Miklis M, Consonni C, Bhat RA, Lipka V, Schulze-Lefert P, Panstruga R. Barley MLO modulates actin-dependent and actin-independent antifungal defense pathways at the cell periphery. Plant Physiol 2007; 144:1132-43; PMID:17449647; http://dx.doi.org/10.1104/pp.107.098897 PubMed DOI PMC
Yokota K, Fukai E, Madsen LH, Jurkiewicz A, Rueda P, Radutoiu S, Held M, Hossain MS, Szczyglowski K, Morieri G, et al. . Rearrangement of actin cytoskeleton mediates invasion of Lotus japonicus roots by Mesorhizobium loti. Plant Cell 2009; 21:267-84; PMID:19136645; http://dx.doi.org/10.1105/tpc.108.063693 PubMed DOI PMC
Tsuda K, Mine A, Bethke G, Igarashi D, Botanga CJ, Tsuda Y, Glazebrook J, Sato M, Katagiri F. Dual regulation of gene expression mediated by extended MAPK activation and salicylic acid contributes to robust innate immunity in Arabidopsis thaliana. Plos Genet 2013; 9:e1004015; PMID:24348271; http://dx.doi.org/10.1371/journal.pgen.1004015 PubMed DOI PMC
Porter K, Shimono M, Tian MY, Day B. Arabidopsis Actin-Depolymerizing Factor-4 links pathogen perception, defense activation and transcription to cytoskeletal dynamics. PLoS Pathog 2012; 8:e1003006; PMID:23144618; http://dx.doi.org/10.1371/journal.ppat.1003006 PubMed DOI PMC
Henty-Ridilla JL, Li JJ, Day B, Staiger CJ. ACTIN DEPOLYMERIZING FACTOR4 regulates actin dynamics during innate immune signaling in Arabidopsis. Plant Cell 2014; 26:340-52; PMID:24464292; http://dx.doi.org/10.1105/tpc.113.122499 PubMed DOI PMC
Robatzek S, Chinchilla D, Boller T. Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev 2006; 20:537-42; PMID:16510871; http://dx.doi.org/10.1101/gad.366506 PubMed DOI PMC
Matouskova J, Janda M, Fiser R, Sasek V, Kocourkova D, Burketova L, Duskova J, Martinec J, Valentova O. Changes in actin dynamics are involved in salicylic acid signaling pathway. Plant Sci 2014; 223:36-44; PMID:24767113; http://dx.doi.org/10.1016/j.plantsci.2014.03.002 PubMed DOI
Kobayashi Y, Kobayashi I. Depolymerization of the actin cytoskeleton induces defense responses in tobacco plants. J Gen Plant Pathol 2007; 18;73:360-4; http://dx.doi.org/10.1007/s10327-007-0029-5 DOI