De novo loss- or gain-of-function mutations in KCNA2 cause epileptic encephalopathy
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu kazuistiky, časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
084730
Wellcome Trust - United Kingdom
R01 NS072248
NINDS NIH HHS - United States
R01NS072248
NINDS NIH HHS - United States
PubMed
25751627
PubMed Central
PMC4380508
DOI
10.1038/ng.3239
Knihovny.cz E-zdroje
- MeSH
- dítě MeSH
- dospělí MeSH
- draslíkový kanál Kv1.2 genetika MeSH
- epilepsie genetika MeSH
- genetická predispozice k nemoci MeSH
- kohortové studie MeSH
- kojenec MeSH
- křeče u dětí genetika MeSH
- lidé MeSH
- mladý dospělý MeSH
- mutace * MeSH
- předškolní dítě MeSH
- rodokmen MeSH
- sekvence aminokyselin MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- draslíkový kanál Kv1.2 MeSH
- KCNA2 protein, human MeSH Prohlížeč
Epileptic encephalopathies are a phenotypically and genetically heterogeneous group of severe epilepsies accompanied by intellectual disability and other neurodevelopmental features. Using next-generation sequencing, we identified four different de novo mutations in KCNA2, encoding the potassium channel KV1.2, in six isolated patients with epileptic encephalopathy (one mutation recurred three times independently). Four individuals presented with febrile and multiple afebrile, often focal seizure types, multifocal epileptiform discharges strongly activated by sleep, mild to moderate intellectual disability, delayed speech development and sometimes ataxia. Functional studies of the two mutations associated with this phenotype showed almost complete loss of function with a dominant-negative effect. Two further individuals presented with a different and more severe epileptic encephalopathy phenotype. They carried mutations inducing a drastic gain-of-function effect leading to permanently open channels. These results establish KCNA2 as a new gene involved in human neurodevelopmental disorders through two different mechanisms, predicting either hyperexcitability or electrical silencing of KV1.2-expressing neurons.
Center for Genomics and Transcriptomics GmbH Tübingen Germany
Centro de Investigación Biomédica en Red de Enfermedades Raras Madrid Spain
Child and Adolescent Department Pediatric Neurology University Hospitals Geneva Switzerland
Cologne Center for Genomics University of Colgone Cologne Germany
Danish Epilepsy Center Dianalund Denmark
Department of Diagnostics Institute of Human Genetics University of Leipzig Leipzig Germany
Department of Medical Genetics Institute of Mother and Child Warsaw Poland
Department of Molecular Biology and Genetics Bogazici University Istanbul Turkey
Department of Neurology Antwerp University Hospital University of Antwerp Antwerp Belgium
Department of Neuropediatrics Christian Albrechts University of Kiel Germany
Department of Neuropediatrics University of Tübingen Tübingen Germany
Division of Human Genetics University Children's Hospital Inselspital Bern Switzerland
Division of Neurology Children's Hospital of Philadelphia Philadelphia USA
Division of Neuropediatrics University Children's Hospital Inselspital Bern Switzerland
Division of Pediatric Endocrinology University Children's Hospital Inselspital Bern Switzerland
Epilepsy Society Chalfont St Peter Bucks SL9 0RJ UK
Folkhälsan Institute of Genetics Helsinki Helsinki Finland
German Research Center for Neurodegenerative Diseases Tübingen Germany
Gulhane Military Medical School Division of Child Neurology Ankara Turkey
Institute for Molecular Medicine Finland University of Helsinki Helsinki Finland
Institute for Regional Health Services University of Southern Denmark Odense Denmark
Laboratory of Neurogenetics Institute Born Bunge University of Antwerp Antwerp Belgium
Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch sur Alzette Luxembourg
Neurogenetics group Department of Molecular Genetics VIB Antwerp Belgium
Neurology Lab and Epilepsy Unit Department of Neurology IIS Fundación Jiménez Díaz UAM Madrid Spain
Neuroscience Center University of Helsinki Helsinki Finland
Research Program's Unit Molecular Neurology University of Helsinki Helsinki Finland
Swiss Epilepsy Center Zürich Switzerland
Wellcome Trust Sanger Institute Wellcome Trust Genome Campus Hinxton UK
Zobrazit více v PubMed
Capovilla G, Wolf P, Beccaria F, Avanzini G. The history of the concept of epileptic encephalopathy. Epilepsia. 2013;54(Suppl 8):2–5. PubMed
Guerrini R, Pellock JM. Age-related epileptic encephalopathies. Handb Clin Neurol. 2012;107:179–93. PubMed
Claes L, et al. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet. 2001;68:1327–32. PubMed PMC
Nava C, et al. De novo mutations in HCN1 cause early infantile epileptic encephalopathy. Nat Genet. 2014;46:640–5. PubMed
Epi KC, et al. De novo mutations in epileptic encephalopathies. Nature. 2013;501:217–21. PubMed PMC
Lerche H, et al. Ion channels in genetic and acquired forms of epilepsy. J Physiol. 2013;591:753–64. PubMed PMC
Lai HC, Jan LY. The distribution and targeting of neuronal voltage-gated ion channels. Nature Reviews Neuroscience. 2006;7:548–562. PubMed
Biervert C, et al. A potassium channel mutation in neonatal human epilepsy. Science. 1998;279:403–6. PubMed
Charlier C, et al. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet. 1998;18:53–5. PubMed
Singh NA, et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet. 1998;18:25–9. PubMed
Weckhuysen S, et al. KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann Neurol. 2012;71:15–25. PubMed
Orhan G, et al. Dominant-negative effects of KCNQ2 mutations are associated with epileptic encephalopathy. Ann Neurol. 2014;75:382–94. PubMed
Browne DL, et al. Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat Genet. 1994;8:136–40. PubMed
Wuttke TV, et al. Peripheral nerve hyperexcitability due to dominant-negative KCNQ2 mutations. Neurology. 2007;69:2045–53. PubMed
Dedek K, et al. Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel. Proc Natl Acad Sci U S A. 2001;98:12272–7. PubMed PMC
Irani SR, et al. Antibodies to KV1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain. 2010;133:2734–48. PubMed PMC
Lemke JR, et al. Targeted next generation sequencing as a diagnostic tool in epileptic disorders. Epilepsia. 2012;53:1387–98. PubMed
Lubbers WJ, et al. Hereditary myokymia and paroxysmal ataxia linked to chromosome 12 is responsive to acetazolamide. J Neurol Neurosurg Psychiatry. 1995;59:400–5. PubMed PMC
Pena SD, Coimbra RL. Ataxia and myoclonic epilepsy due to a heterozygous new mutation in KCNA2: proposal for a new channelopathy. Clin Genet. 2015;87:e1–3. PubMed
Xie G, et al. A new KV1.2 channelopathy underlying cerebellar ataxia. J Biol Chem. 2010;285:32160–73. PubMed PMC
Brew HM, et al. Seizures and reduced life span in mice lacking the potassium channel subunit KV1.2, but hypoexcitability and enlarged KV1 currents in auditory neurons. J Neurophysiol. 2007;98:1501–25. PubMed
Jan LY, Jan YN. Voltage-gated potassium channels and the diversity of electrical signalling. J Physiol. 2012;590:2591–9. PubMed PMC
Holmgren M, Shin KS, Yellen G. The activation gate of a voltage-gated K+ channel can be trapped in the open state by an intersubunit metal bridge. Neuron. 1998;21:617–21. PubMed
Long SB, Campbell EB, Mackinnon R. Voltage sensor of KV1.2: structural basis of electromechanical coupling. Science. 2005;309:903–8. PubMed
Labro AJ, Raes AL, Bellens I, Ottschytsch N, Snyders DJ. Gating of shaker-type channels requires the flexibility of S6 caused by prolines. J Biol Chem. 2003;278:50724–31. PubMed
Chen X, Wang Q, Ni F, Ma J. Structure of the full-length Shaker potassium channel KV1.2 by normal-mode-based X-ray crystallographic refinement. Proc Natl Acad Sci U S A. 2010;107:11352–7. PubMed PMC
Klein A, Boltshauser E, Jen J, Baloh RW. Episodic ataxia type 1 with distal weakness: a novel manifestation of a potassium channelopathy. Neuropediatrics. 2004;35:147–9. PubMed
Nybo K. Molecular biology techniques Q&A. Western blot: protein migration. Biotechniques. 2012;53:23–4. PubMed
Lorincz A, Nusser Z. Cell-type-dependent molecular composition of the axon initial segment. J Neurosci. 2008;28:14329–40. PubMed PMC
Wang H, Kunkel DD, Schwartzkroin PA, Tempel BL. Localization of Kv1.1 and Kv1.2, two K channel proteins, to synaptic terminals, somata, and dendrites in the mouse brain. J Neurosci. 1994;14:4588–99. PubMed PMC
Suls A, et al. De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome. Am J Hum Genet. 2013;93:967–75. PubMed PMC
Suls A, et al. Microdeletions involving the SCN1A gene may be common in SCN1A-mutation-negative SMEI patients. Hum Mutat. 2006;27:914–20. PubMed
Wang H, Kunkel DD, Martin TM, Schwartzkroin PA, Tempel BL. Heteromultimeric K+ channels in terminal and juxtaparanodal regions of neurons. Nature. 1993;365:75–9. PubMed
Liu X, Jian X, Boerwinkle E. dbNSFP v2.0: a database of human non-synonymous SNVs and their functional predictions and annotations. Hum Mutat. 2013;34:E2393–402. PubMed PMC
Kong A, et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature. 2012;488:471–5. PubMed PMC