Limit of detection of genomic DNA by conventional PCR for estimating the load of Staphylococcus aureus and Escherichia coli associated with bovine mastitis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem
PubMed
25773783
DOI
10.1007/s12223-015-0384-0
PII: 10.1007/s12223-015-0384-0
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny genetika MeSH
- DNA bakterií genetika MeSH
- Escherichia coli genetika izolace a purifikace MeSH
- infekce vyvolané Escherichia coli diagnóza mikrobiologie veterinární MeSH
- limita detekce MeSH
- mastitida skotu diagnóza mikrobiologie MeSH
- polymerázová řetězová reakce metody MeSH
- skot MeSH
- stafylokokové infekce diagnóza mikrobiologie veterinární MeSH
- Staphylococcus aureus genetika izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- DNA bakterií MeSH
Detection of mastitis-associated bacteria can be accomplished by culturing or by molecular techniques. On the other hand, rapid and inexpensive methods to enumerate bacterial load without culturing can be better achieved by molecular methods. Staphylococcus aureus and Escherichia coli are the predominant bacterial pathogens associated with bovine mastitis. Here, we describe the application of conventional PCR for the limit of detection (LOD) of genomic DNA of S. aureus and E. coli based on single-copy genes. The selected genes were thermonuclease (nuc), aureolysin (aur), and staphopain A (scpA) for S. aureus and β-D-glucuronidase A (uidA), cytochrome d oxidase (cyd), and rodA (a gene affecting cell shape and methicillin sensitivity) for E. coli. The LOD was 5.3, 15.9, and 143 pg for aur, nuc, and scpA genes, corresponding to S. aureus genomic copies of 1.75 × 10(3), 5.16 × 10(3), and 4.71 × 10(4), respectively. The LOD was 0.45, 12.3 and 109 pg for uidA, rodA and cyd genes, corresponding to E. coli genome copies of 8.91 × 10(1), 2.43 × 10(3), and 2.16 × 10(4), respectively. Application of uidA and aur PCRs to field strains revealed that as low as approximately 100 genome copies of E. coli and 1000-10,000 copies of S. aureus could be detected. This study is the first to report LOD of genomic DNA using conventional PCR for aur and scpA genes of S. aureus, and rodA and cyd genes of E. coli. The results should be useful for developing assays to assess bacterial load in milk and to determine the load that contributes to subclinical or clinical mastitis.
Ella Foundation Genome Valley Turkapally Shameerpet Mandal Hyderabad 500078 India
Institute of Wildlife Veterinary Research Kudige Kodagu 571232 India
Zobrazit více v PubMed
Southeast Asian J Trop Med Public Health. 2005 Jan;36(1):162-9 PubMed
Foodborne Pathog Dis. 2009 Jun;6(5):605-11 PubMed
Clin Microbiol Infect. 2007 May;13(5):516-24 PubMed
J Dairy Res. 2003 May;70(2):149-55 PubMed
J Clin Microbiol. 2000 Dec;38(12):4351-5 PubMed
Infect Immun. 2000 Feb;68(2):973-6 PubMed
Mol Cell Probes. 2002 Aug;16(4):307-14 PubMed
Indian J Med Res. 2009 Feb;129(2):182-8 PubMed
Food Microbiol. 2008 May;25(3):452-9 PubMed
J Appl Microbiol. 2011 Dec;111(6):1349-56 PubMed
Folia Microbiol (Praha). 2006;51(6):639-46 PubMed
Res Microbiol. 1998 Feb;149(2):145-54 PubMed
Folia Microbiol (Praha). 2010 Sep;55(5):502-7 PubMed
Indian J Microbiol. 2013 Sep;53(3):315-20 PubMed
J Appl Microbiol. 2002;93(5):825-34 PubMed
Lett Appl Microbiol. 2005;41(2):112-8 PubMed
Mol Cell Probes. 2004 Aug;18(4):283-8 PubMed
J Dairy Sci. 2008 May;91(5):1893-902 PubMed
J Clin Microbiol. 2001 Jul;39(7):2584-9 PubMed
Mol Biol Evol. 1996 Jul;13(6):864-72 PubMed
J Dairy Sci. 2007 Oct;90(10):4661-9 PubMed
Lett Appl Microbiol. 1996 Feb;22(2):153-8 PubMed
Appl Environ Microbiol. 1996 May;62(5):1683-8 PubMed
J Dairy Sci. 2013 May;96(5):2857-65 PubMed
Res Microbiol. 2011 Dec;162(10):1060-6 PubMed
Lett Appl Microbiol. 2006 Apr;42(4):386-91 PubMed
Lett Appl Microbiol. 2011 Mar;52(3):298-306 PubMed
J Clin Microbiol. 2007 Nov;45(11):3641-6 PubMed
J Vet Diagn Invest. 2008 Jul;20(4):463-71 PubMed
Int J Food Microbiol. 2007 Sep 15;118(2):186-93 PubMed
J Dairy Sci. 2002 Jul;85(7):1717-23 PubMed
Ann Clin Biochem. 1999 Sep;36 ( Pt 5):642-8 PubMed
Biomed Res Int. 2013;2013:264651 PubMed
Vet Rec. 2007 Sep 15;161(11):381-3 PubMed
J Dairy Sci. 2011 May;94(5):2171-84 PubMed
Appl Environ Microbiol. 1991 Apr;57(4):1013-7 PubMed
J Clin Microbiol. 1992 Jul;30(7):1654-60 PubMed
J Dairy Sci. 2010 Dec;93(12):5707-15 PubMed
J Clin Microbiol. 1999 Mar;37(3):570-4 PubMed
J Dairy Sci. 2001 Jan;84(1):74-83 PubMed
Lett Appl Microbiol. 2002;34(3):222-6 PubMed
J Clin Microbiol. 1991 Mar;29(3):426-30 PubMed
Appl Environ Microbiol. 1999 Feb;65(2):868-72 PubMed
Can J Microbiol. 1996 Aug;42(8):862-6 PubMed
Acad Emerg Med. 2010 Jul;17(7):741-7 PubMed
J Microbiol Methods. 2011 Oct;87(1):64-9 PubMed
Appl Environ Microbiol. 1991 Jun;57(6):1793-8 PubMed
Biol Chem. 2004 Nov;385(11):1059-67 PubMed
Int J Food Microbiol. 1992 Sep;17(1):37-45 PubMed
J Dairy Sci. 2005 Oct;88(10):3510-8 PubMed
Int J Food Microbiol. 1991 Apr;12(4):339-51 PubMed
Foodborne Pathog Dis. 2012 Mar;9(3):249-57 PubMed
Int J Food Microbiol. 2006 Aug 15;111(1):21-5 PubMed
J Appl Microbiol. 1998 Apr;84(4):585-92 PubMed
Microbiology. 1997 Nov;143 ( Pt 11):3491-500 PubMed
J Dairy Sci. 2001 May;84(5):1140-8 PubMed
J Clin Microbiol. 2014 Sep;52(9):3244-9 PubMed
Res Microbiol. 2005 May;156(4):554-63 PubMed
Int J Food Microbiol. 1994 Apr;22(1):55-62 PubMed
Foodborne Pathog Dis. 2012 Jun;9(6):541-8 PubMed
Poult Sci. 2013 May;92(5):1164-70 PubMed
J Food Prot. 2007 Jan;70(1):90-6 PubMed
J Dairy Sci. 2009 Jun;92(6):2610-7 PubMed
Appl Environ Microbiol. 2001 Jul;67(7):3122-6 PubMed
J Appl Microbiol. 2004;96(5):1090-6 PubMed