Nonlinear vs. linear biasing in Trp-cage folding simulations
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25796266
DOI
10.1063/1.4914828
Knihovny.cz E-zdroje
- MeSH
- chemické modely * MeSH
- lineární modely * MeSH
- nelineární dynamika * MeSH
- počítačová simulace * MeSH
- pohyb těles MeSH
- proteiny chemie MeSH
- rozpouštědla chemie MeSH
- sbalování proteinů * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny MeSH
- rozpouštědla MeSH
Biased simulations have great potential for the study of slow processes, including protein folding. Atomic motions in molecules are nonlinear, which suggests that simulations with enhanced sampling of collective motions traced by nonlinear dimensionality reduction methods may perform better than linear ones. In this study, we compare an unbiased folding simulation of the Trp-cage miniprotein with metadynamics simulations using both linear (principle component analysis) and nonlinear (Isomap) low dimensional embeddings as collective variables. Folding of the mini-protein was successfully simulated in 200 ns simulation with linear biasing and non-linear motion biasing. The folded state was correctly predicted as the free energy minimum in both simulations. We found that the advantage of linear motion biasing is that it can sample a larger conformational space, whereas the advantage of nonlinear motion biasing lies in slightly better resolution of the resulting free energy surface. In terms of sampling efficiency, both methods are comparable.
Citace poskytuje Crossref.org
Computer Folding of Parallel DNA G-Quadruplex: Hitchhiker's Guide to the Conformational Space