Can biomarkers help to diagnose early heart failure with preserved ejection fraction?
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
PubMed
25802475
PubMed Central
PMC4329823
DOI
10.1155/2015/426045
Knihovny.cz E-resources
- MeSH
- Biomarkers blood MeSH
- Antigens, CD blood MeSH
- Cytokines blood MeSH
- Endoglin MeSH
- Galectin 3 blood MeSH
- Interleukin-1 Receptor-Like 1 Protein MeSH
- Humans MeSH
- Receptors, Cell Surface blood MeSH
- Growth Differentiation Factor 15 blood MeSH
- Heart Failure blood MeSH
- Stroke Volume MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Biomarkers MeSH
- cardiotrophin 1 MeSH Browser
- Antigens, CD MeSH
- Cytokines MeSH
- Endoglin MeSH
- ENG protein, human MeSH Browser
- Galectin 3 MeSH
- GDF15 protein, human MeSH Browser
- IL1RL1 protein, human MeSH Browser
- Interleukin-1 Receptor-Like 1 Protein MeSH
- Receptors, Cell Surface MeSH
- Growth Differentiation Factor 15 MeSH
Early heart failure with preserved ejection fraction (HFpEF) is a frequent disease, but its diagnosis is difficult and relies mostly on the evidence of left ventricular filling pressure (LVFP) elevation during exercise. Several reports have suggested that natriuretic peptides plasma levels reflect exercise-induced increase in LVFP, but they still have significant limitations. In this context, any new laboratory biomarker that can accurately reflect LVFP elevation during exercise is desirable. Recently, cardiotrophin-1, soluble endoglin, ST2, growth differentiation factor 15, galectin-3, and other new laboratory markers associated with LVFP have emerged. However, the current data on the relationship of these biomarkers and diastolic dysfunction are limited to resting conditions. Therefore, their secretion deserves to be tested under the exercise to determine their potential role in making a diagnosis of early HFpEF.
See more in PubMed
Bhatia R. S., Tu J. V., Lee D. S., et al. Outcome of heart failure with preserved ejection fraction in a population-based study. The New England Journal of Medicine. 2006;355(3):260–269. doi: 10.1056/nejmoa051530. PubMed DOI
Owan T. E., Hodge D. O., Herges R. M., Jacobsen S. J., Roger V. L., Redfield M. M. Trends in prevalence and outcome of heart failure with preserved ejection fraction. The New England Journal of Medicine. 2006;355(3):251–259. doi: 10.1056/nejmoa052256. PubMed DOI
Paulus W. J., Tschöpe C., Sanderson J. E., et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. European Heart Journal. 2007;28(20):2539–2550. doi: 10.1093/eurheartj/ehm037. PubMed DOI
McMurray J. J. V., Adamopoulos S., Anker S. D., et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal. 2012;33:1787–1847. PubMed
Holland D. J., Prasad S. B., Marwick T. H. Contribution of exercise echocardiography to the diagnosis of heart failure with preserved ejection fraction (HFpEF) Heart. 2010;96(13):1024–1028. doi: 10.1136/hrt.2009.183947. PubMed DOI
Meluzín J., Sitar J., Křístek J., et al. The role of exercise echocardiography in the diagnostics of heart failure with normal left ventricular ejection fraction. European Journal of Echocardiography. 2011;12(8):591–602. doi: 10.1093/ejechocard/jer082. PubMed DOI
Meluzin J., Hude P., Leinveber P., et al. High prevalence of exercise-induced heart failure with normal ejection fraction in post-heart transplant patients. Biomedical Papers. 2014;158(2):295–302. doi: 10.5507/bp.2013.095. PubMed DOI
Borlaug B. A., Nishimura R. A., Sorajja P., Lam C. S. P., Redfield M. M. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circulation: Heart Failure. 2010;3(5):588–595. doi: 10.1161/circheartfailure.109.930701. PubMed DOI PMC
Burgess M. I., Jenkins C., Sharman J. E., Marwick T. H. Diastolic stress echocardiography: hemodynamic validation and clinical significance of estimation of left ventricular filling pressure with exercise. Journal of the American College of Cardiology. 2006;47(9):1891–1900. doi: 10.1016/j.jacc.2006.02.042. PubMed DOI
Talreja D. R., Nishimura R. A., Oh J. K. Estimation of left ventricular filling pressure with exercise by Doppler echocardiography in patients with normal systolic function: a simultaneous echocardiographic-cardiac catheterization study. Journal of the American Society of Echocardiography. 2007;20(5):477–479. doi: 10.1016/j.echo.2006.10.005. PubMed DOI
Dalsgaard M., Kjaergaard J., Pecini R., et al. Left ventricular filling pressure estimation at rest and during exercise in patients with severe aortic valve stenosis: comparison of echocardiographic and invasive measurements. Journal of the American Society of Echocardiography. 2009;22(4):343–349. doi: 10.1016/j.echo.2009.01.007. PubMed DOI
Maeder M. T., Thompson B. R., Brunner-La Rocca H.-P., Kaye D. M. Hemodynamic basis of exercise limitation in patients with heart failure and normal ejection fraction. Journal of the American College of Cardiology. 2010;56(11):855–863. doi: 10.1016/j.jacc.2010.04.040. PubMed DOI
Meluzin J., Hude P., Krejci J., et al. Noninvasive prediction of the exercise-induced elevation in left ventricular filling pressure in post-heart transplant patients with normal left ventricular ejection fraction. Experimental & Clinical Cardiology. 2013;18(2):63–72. PubMed PMC
Andersen M. J., Ersbøll M., Gustafsson F., et al. Exercise-induced changes in left ventricular filling pressure after myocardial infarction assessed with simultaneous right heart catheterization and Doppler echocardiography. International Journal of Cardiology. 2013;168(3):2803–2810. doi: 10.1016/j.ijcard.2013.03.122. PubMed DOI
Bansal M., Marwick T. H. Natriuretic peptides and filling pressure at rest and stress. Heart Failure Clinics. 2008;4(1):71–86. doi: 10.1016/j.hfc.2007.10.003. PubMed DOI
Potocki M., Breidthardt T., Reichlin T., et al. Comparison of midregional pro-atrial natriuretic peptide with N-terminal pro-B-type natriuretic peptide in the diagnosis of heart failure. Journal of Internal Medicine. 2010;267(1):119–129. doi: 10.1111/j.1365-2796.2009.02135.x. PubMed DOI
Yasue H., Yoshimura M., Sumida H., et al. Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation. 1994;90(1):195–203. doi: 10.1161/01.CIR.90.1.195. PubMed DOI
Keller N., Larsen J., Sykulski R., Storm T., Thamsborg G. Atrial natriuretic factor during exercise in patients with congestive heart failure. Acta Endocrinologica. 1988;118(2):168–172. PubMed
Matsubara H., Nishikawa M., Umeda Y., et al. The role of atrial pressure in secreting atrial natriuretic polypeptides. The American Heart Journal. 1987;113(6):1457–1463. doi: 10.1016/0002-8703(87)90662-4. PubMed DOI
Walsh K. P., Williams T. D. M., Spiteri C., Pitts E., Lightman S. L., Sutton R. Role of atrial pressure and rate in release of atrial natriuretic peptide. The American Journal of Physiology—Regulatory Integrative and Comparative Physiology. 1988;254:R607–R610. PubMed
Matsumoto A., Hirata Y., Momomura S.-I., et al. Effects of exercise on plasma level of brain natriuretic peptide in congestive heart failure with and without left ventricuiar dysfunction. American Heart Journal. 1995;129(1):139–145. doi: 10.1016/0002-8703(95)90054-3. PubMed DOI
Adams K. F., Jr., Mathur V. S., Gheorghiade M. B-Type natriuretic peptide: from bench to bedside. The American Heart Journal. 2003;145(2):S34–S46. doi: 10.1067/mhj.2003.152. PubMed DOI
Ikeda N., Yasu T., Nishikimi T., et al. N-terminal pro-atrial natriuretic peptide and exercise prescription in patients with myocardial infarction. Regulatory Peptides. 2007;141(1–3):154–158. doi: 10.1016/j.regpep.2006.12.024. PubMed DOI
Onuoha G. N., Nicholls D. P., Patterson A., Beringer T. Neuropeptide secretion in exercise. Neuropeptides. 1998;32(4):319–325. doi: 10.1016/S0143-4179(98)90054-3. PubMed DOI
Abhayaratna W. P., Marwick T. H., Becker N. G., Jeffery I. M., McGill D. A., Smith W. T. Population-based detection of systolic and diastolic dysfunction with amino-terminal pro-B-type natriuretic peptide. American Heart Journal. 2006;152(5):941–948. doi: 10.1016/j.ahj.2006.05.007. PubMed DOI
Fradley M. G., Larson M. G., Cheng S., et al. Reference limits for N-terminal-pro-B-type natriuretic peptide in healthy individuals (from the Framingham Heart Study) The AmericanJournal of Cardiology. 2011;108(9):1341–1345. doi: 10.1016/j.amjcard.2011.06.057. PubMed DOI PMC
Qi W., Mathisen P., Kjekshus J., et al. Natriuretic peptides in patients with aortic stenosis. American Heart Journal. 2001;142(4):725–732. doi: 10.1067/mhj.2001.117131. PubMed DOI
Rogers R. K., Stoddard G. J., Greene T., et al. Usefulness of adjusting for clinical covariates to improve the ability of B-type natriuretic peptide to distinguish cardiac from noncardiac dyspea. The American Journal of Cardiology. 2009;104(5):689–694. doi: 10.1016/j.amjcard.2009.04.043. PubMed DOI
Galasko G. I. W., Lahiri A., Barnes S. C., Collinson P., Senior R. What is the normal range for N-terminal pro-brain natriuretic peptide? How well does this normal range screen for cardiovascular disease? European Heart Journal. 2005;26(21):2269–2276. doi: 10.1093/eurheartj/ehi410. PubMed DOI
O'Hanlon R., O'Shea P., Ledwidge M., et al. The biologic variability of B-type natriuretic peptide and N-terminal pro-B-type natriuretic peptide in stable heart failure patients. Journal of Cardiac Failure. 2007;13(1):50–55. doi: 10.1016/j.cardfail.2006.09.003. PubMed DOI
Mottram P. M., Leano R., Marwick T. H. Usefulness of B-type natriuretic peptide in hypertensive patients with exertional dyspnea and normal left ventricular ejection fraction and correlation with new echocardiographic indexes of systolic and diastolic function. The American Journal of Cardiology. 2003;92(12):1434–1438. doi: 10.1016/j.amjcard.2003.08.053. PubMed DOI
Lubien E., DeMaria A., Krishnaswamy P., et al. Utility of B-natriuretic peptide in detecting diastolic dysfunction: comparison with Doppler velocity recordings. Circulation. 2002;105(5):595–601. doi: 10.1161/hc0502.103010. PubMed DOI
Tschöpe C., Kašner M., Westermann D., Gaub R., Poller W. C., Schultheiss H.-P. The role of NT-proBNP in the diagnostics of isolated diastolic dysfunction: correlation with echocardiographic and invasive measurements. European Heart Journal. 2005;26(21):2277–2284. doi: 10.1093/eurheartj/ehi406. PubMed DOI
Watanabe S., Shite J., Takaoka H., et al. Myocardial stiffness is an important determinant of the plasma brain natriuretic peptide concentration in patients with both diastolic and systolic heart failure. European Heart Journal. 2006;27(7):832–838. doi: 10.1093/eurheartj/ehi772. PubMed DOI
Kasner M., Gaub R., Westermann D., et al. Simultaneous estimation of NT-proBNP on top to mitral flow Doppler echocardiography as an accurate strategy to diagnose diastolic dysfunction in HFNEF. International Journal of Cardiology. 2011;149(1):23–29. doi: 10.1016/j.ijcard.2009.11.035. PubMed DOI
Dahlström U. Can natriuretic peptides be used for the diagnosis of diastolic heart failure? European Journal of Heart Failure. 2004;6(3):281–287. doi: 10.1016/j.ejheart.2004.01.005. PubMed DOI
Joung B., Ha J.-W., Ko Y. G., et al. Can pro-brain natriuretic peptide be used as a noninvasive predictor of elevated left ventricular diastolic pressures in patients with normal systolic function? American Heart Journal. 2005;150(6):1213–1219. doi: 10.1016/j.ahj.2005.01.014. PubMed DOI
Redfield M. M., Rodeheffer R. J., Jacobsen S. J., Mahoney D. W., Bailey K. R., Burnett J. C., Jr. Plasma brain natriuretic peptide to detect preclinical ventricular systolic or diastolic dysfunction: a community-based study. Circulation. 2004;109(25):3176–3181. doi: 10.1161/01.CIR.0000130845.38133.8F. PubMed DOI
McCullough P. A., Nowak R. M., McCord J., et al. B-type natriuretic peptide and clinical judgment in emergency diagnosis of heart failure: analysis from Breathing Not Properly (BNP) Multinational Study. Circulation. 2002;106(4):416–422. doi: 10.1161/01.cir.0000025242.79963.4c. PubMed DOI
Pemberton C. J., Raudsepp S. D., Yandle T. G., Cameron V. A., Richards A. M. Plasma cardiotrophin-1 is elevated in human hypertension and stimulated by ventricular stretch. Cardiovascular Research. 2005;68(1):109–117. doi: 10.1016/j.cardiores.2005.05.014. PubMed DOI
Takimoto Y., Aoyama T., Iwanaga Y., et al. Increased expression of cardiotrophin-1 during ventricular remodeling in hypertensive rats. The American Journal of Physiology—Heart and Circulatory Physiology. 2002;282(3):H896–H901. PubMed
López B., González A., Querejeta R., Barba J., Díez J. Association of plasma cardiotrophin-1 with stage C heart failure in hypertensive patients: potential diagnostic implications. Journal of Hypertension. 2009;27(2):418–424. doi: 10.1097/hjh.0b013e32831ac981. PubMed DOI
López B., González A., Querejeta R., Larman M., Rábago G., Díez J. Association of cardiotrophin-1 with myocardial fibrosis in hypertensive patients with heart failure. Hypertension. 2014;63(3):483–489. doi: 10.1161/hypertensionaha.113.02654. PubMed DOI
Celik A., Sahin S., Koc F., et al. Cardiotrophin-1 plasma levels are increased in patients with diastolic heart failure. Medical Science Monitor. 2012;18(1):CR25–CR31. PubMed PMC
Kapur N. K., Heffernan K. S., Yunis A. A., et al. Usefulness of soluble endoglin as a noninvasive measure of left ventricular filling pressure in heart failure. The American Journal of Cardiology. 2010;106(12):1770–1776. doi: 10.1016/j.amjcard.2010.08.018. PubMed DOI PMC
Fitzgibbons T. P., Paolino J., Dagorn J. C., Meyer T. E. Usefulness of pancreatitis-associated protein, a novel biomarker, to predict severity of disease in ambulatory patients with heart failure. The American Journal of Cardiology. 2014;113(1):123–126. doi: 10.1016/j.amjcard.2013.09.026. PubMed DOI
Shah R. V., Januzzi J. L., Jr. ST2: a novel remodeling biomarker in acute and chronic heart failure. Current Heart Failure Reports. 2010;7(1):9–14. doi: 10.1007/s11897-010-0005-9. PubMed DOI
Bartunek J., Delrue L., van Durme F., et al. Nonmyocardial production of ST2 protein in human hypertrophy and failure is related to diastolic load. Journal of the American College of Cardiology. 2008;52(25):2166–2174. doi: 10.1016/j.jacc.2008.09.027. PubMed DOI PMC
Wang Y.-Ch., Yu C.-Ch., Chiu F.-Ch., et al. Soluble ST2 as a biomarker for detecting stable heart failure with a normal ejection fraction in hypertensive patients. Journal of Cardiac Failure. 2013;19(3):163–168. doi: 10.1016/j.cardfail.2013.01.010. PubMed DOI
Santhanakrishnan R., Chong J. P. C., Ng T. P., et al. Growth differentiation factor 15, ST2, high-sensitivity troponin T, and N-terminal pro brain natriuretic peptide in heart failure with preserved vs. reduced ejection fraction. European Journal of Heart Failure. 2012;14(12):1338–1347. doi: 10.1093/eurjhf/hfs130. PubMed DOI
Stahrenberg R., Edelmann F., Mende M., et al. The novel biomarker growth differentiation factor 15 in heart failure with normal ejection fraction. European Journal of Heart Failure. 2010;12(12):1309–1316. doi: 10.1093/eurjhf/hfq151. PubMed DOI PMC
De Boer R. A., Yu L., Van Veldhuisen D. J. Galectin-3 in cardiac remodeling and heart failure. Current Heart Failure Reports. 2010;7(1):1–8. doi: 10.1007/s11897-010-0004-x. PubMed DOI PMC
Carrasco-Sánchez F. J., Aramburu-Bodas O., Salamanca-Bautista P., et al. Predictive value of serum galectin-3 levels in patients with acute heart failure with preserved ejection fraction. International Journal of Cardiology. 2013;169(3):177–182. doi: 10.1016/j.ijcard.2013.08.081. PubMed DOI
de Boer R. A., Lok D. J. A., Jaarsma T., et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Annals of Medicine. 2011;43(1):60–68. doi: 10.3109/07853890.2010.538080. PubMed DOI PMC
Ho J. E., Liu C., Lyass A., et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. Journal of the American College of Cardiology. 2012;60(14):1249–1256. doi: 10.1016/j.jacc.2012.04.053. PubMed DOI PMC
Shah R. V., Chen-Tournoux A. A., Picard M. H., van Kimmenade R. R. J., Januzzi J. L. Galectin-3, cardiac structure and function, and long-term mortality in patients with acutely decompensated heart failure. European Journal of Heart Failure. 2010;12(8):826–832. doi: 10.1093/eurjhf/hfq091. PubMed DOI PMC
Andersen M. J., Ersbøll M., Bro-Jeppesen J., et al. Relationships between biomarkers and left ventricular filling pressures at rest and during exercise in patients after myocardial infarction. Journal of Cardiac Failure. 2014;20(12):959–967. doi: 10.1016/j.cardfail.2014.09.012. PubMed DOI
Hung C.-L., Hung T.-C., Liu C.-C., et al. Relation of carbohydrate antigen-125 to left atrial remodeling and its prognostic usefulness in patients with heart failure and preserved left ventricular ejection fraction in women. The American Journal of Cardiology. 2012;110(7):993–1000. doi: 10.1016/j.amjcard.2012.05.030. PubMed DOI
Limongelli G., Calabrò P., Maddaloni V., et al. Cardiotrophin-1 and TNF-α circulating levels at rest and during cardiopulmonary exercise test in athletes and healthy individuals. Cytokine. 2010;50(3):245–247. doi: 10.1016/j.cyto.2009.12.007. PubMed DOI
Huang W.-S., Lee M.-S., Perng H.-W., Yang S.-P., Kuo S.-W., Chang H.-D. Circulating brain natriuretic peptide values in healthy men before and after exercise. Metabolism: Clinical and Experimental. 2002;51(11):1423–1426. doi: 10.1053/meta.2002.35194. PubMed DOI
Kohno M., Horio T., Yokokawa K., Akioka K., Ikeda M., Takeda T. Pulmonary arterial brain natriuretic peptide concentration and cardiopulmonary hemodynamics during exercise in patients with essential hypertension. Metabolism: Clinical and Experimental. 1992;41(12):1273–1275. doi: 10.1016/0026-0495(92)90095-R. PubMed DOI
Mottram P. M., Haluska B. A., Marwick T. H. Response of B-type natriuretic peptide to exercise in hypertensive patients with suspected diastolic heart failure: correlation with cardiac function, hemodynamics, and workload. The American Heart Journal. 2004;148(2):365–370. doi: 10.1016/j.ahj.2004.02.012. PubMed DOI
Collier P., Watson C. J., Voon V., et al. Can emerging biomarkers of myocardial remodelling identify asymptomatic hypertensive patients at risk for diastolic dysfunction and diastolic heart failure? European Journal of Heart Failure. 2011;13(10):1087–1095. doi: 10.1093/eurjhf/hfr079. PubMed DOI
van Kimmenade R. R. J., Januzzi J. L., Jr. Emerging biomarkers in heart failure. Clinical Chemistry. 2012;58(1):127–138. doi: 10.1373/clinchem.2011.165720. PubMed DOI
Baker B. J., Wu W. C. L., Winters C. J., et al. Exercise increases the circulating concentration of the N-terminus of the atrial natriuretic factor prohormone in normal individuals. The American Heart Journal. 1991;122(5):1395–1402. doi: 10.1016/0002-8703(91)90583-4. PubMed DOI
Saito Y., Nakao K., Sugawara A., et al. Atrial natriuretic polypeptide during exercise in healthy man. Acta Endocrinologica. 1987;116(1):59–65. PubMed
Follenius M., Brandenberger G. Increase in atrial natriuretic peptide in response to physical exercise. European Journal of Applied Physiology and Occupational Physiology. 1988;57(2):159–162. doi: 10.1007/BF00640656. PubMed DOI
Somers V. K., Anderson J. V., Conway J., Sleight P., Bloom S. R. Atrial natriuretic peptide is released by dynamic exercise in man. Hormone and Metabolic Research. 1986;18(12):871–872. doi: 10.1055/s-2007-1012460. PubMed DOI
Petzl D. H., Hartter E., Osterode W., Böhm H., Woloszczuk W. Atrial natriuretic peptide release due to physical exercise in healthy persons and in cardiac patients. Klinische Wochenschrift. 1987;65(4):194–196. doi: 10.1007/BF01728234. PubMed DOI
Nishikimi T., Morimoto A., Ishikawa K., et al. Different secretion patterns of adrenomedullin, brain natriuretic peptide, and atrial natriuretic peptide during exercise in hypertensive and normotensive subjects. Clinical and Experimental Hypertension. 1997;19(4):503–518. doi: 10.3109/10641969709084511. PubMed DOI
Tanaka M., Ishizaka Y., Ishiyama Y., et al. Exercise-induced secretion of brain natriuretic peptide in essential hypertension and normal subjects. Hypertension Research—Clinical and Experimental. 1995;18(2):159–166. doi: 10.1291/hypres.18.159. PubMed DOI
Raine A. E. G., Erne P., Bürgisser E., et al. Atrial natriuretic peptide and atrial pressure in patients with congestive heart failure. The New England Journal of Medicine. 1986;315(9):533–537. doi: 10.1056/nejm198608283150901. PubMed DOI
Steele I. C., McDowell G., Moore A., et al. Responses of atrial natriuretic peptide and brain natriuretic peptide to exercise in patients with chronic heart failure and normal control subjects. European Journal of Clinical Investigation. 1997;27(4):270–276. doi: 10.1046/j.1365-2362.1997.1070653.x. PubMed DOI
Wijbenga J. A. M., Balk A. H. M. M., Boomsma F., Man A. J., Hall C. Cardiac peptides differ in their response to exercise. Implications for patients with heart failure in clinical practice. European Heart Journal. 1999;20(19):1424–1428. doi: 10.1053/euhj.1999.1630. PubMed DOI
Tschöpe C., Kasner M., Westermann D., et al. Elevated NT-ProBNP levels in patients with increased left ventricular filling pressure during exercise despite preserved systolic function. Journal of Cardiac Failure. 2005;11(5):S28–S33. doi: 10.1016/j.cardfail.2005.04.013. PubMed DOI
Fukuta H., Little W. C. Elevated left ventricular filling pressure after maximal exercise predicts increased plasma B-type natriuretic peptide levels in patients with impaired relaxation pattern of diastolic filling. Journal of the American Society of Echocardiography. 2007;20(7):832–837. doi: 10.1016/j.echo.2007.01.004. PubMed DOI