Functional roles of three cutin biosynthetic acyltransferases in cytokinin responses and skotomorphogenesis
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25803274
PubMed Central
PMC4372371
DOI
10.1371/journal.pone.0121943
PII: PONE-D-14-48957
Knihovny.cz E-zdroje
- MeSH
- acyltransferasy genetika metabolismus MeSH
- Arabidopsis genetika růst a vývoj metabolismus účinky záření MeSH
- cytokininy metabolismus farmakologie MeSH
- fenotyp MeSH
- membránové lipidy biosyntéza MeSH
- meristém účinky léků genetika růst a vývoj účinky záření MeSH
- morfogeneze * účinky léků účinky záření MeSH
- mutace MeSH
- proteiny huseníčku genetika metabolismus MeSH
- regulace genové exprese u rostlin účinky léků účinky záření MeSH
- semenáček účinky léků genetika růst a vývoj účinky záření MeSH
- tma MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acyltransferasy MeSH
- cutin MeSH Prohlížeč
- cytokininy MeSH
- membránové lipidy MeSH
- proteiny huseníčku MeSH
Cytokinins (CKs) regulate plant development and growth via a two-component signaling pathway. By forward genetic screening, we isolated an Arabidopsis mutant named grow fast on cytokinins 1 (gfc1), whose seedlings grew larger aerial parts on MS medium with CK. gfc1 is allelic to a previously reported cutin mutant defective in cuticular ridges (dcr). GFC1/DCR encodes a soluble BAHD acyltransferase (a name based on the first four enzymes characterized in this family: Benzylalcohol O-acetyltransferase, Anthocyanin O-hydroxycinnamoyltransferase, anthranilate N-hydroxycinnamoyl/benzoyltransferase and Deacetylvindoline 4-O-acetyltransferase) with diacylglycerol acyltransferase (DGAT) activity in vitro and is necessary for normal cuticle formation on epidermis in vivo. Here we show that gfc1 was a CK-insensitive mutant, as revealed by its low regeneration frequency in vitro and resistance to CK in adventitious root formation and dark-grown hypocotyl inhibition assays. In addition, gfc1 had de-etiolated phenotypes in darkness and was therefore defective in skotomorphogenesis. The background expression levels of most type-A Arabidopsis Response Regulator (ARR) genes were higher in the gfc1 mutant. The gfc1-associated phenotypes were also observed in the cutin-deficient glycerol-3-phosphate acyltransferase 4/8 (gpat4/8) double mutant [defective in glycerol-3-phosphate (G3P) acyltransferase enzymes GPAT4 and GPAT8, which redundantly catalyze the acylation of G3P by hydroxyl fatty acid (OH-FA)], but not in the cutin-deficient mutant cytochrome p450, family 86, subfamily A, polypeptide 2/aberrant induction of type three 1 (cyp86A2/att1), which affects the biosynthesis of some OH-FAs. Our results indicate that some acyltransferases associated with cutin formation are involved in CK responses and skotomorphogenesis in Arabidopsis.
Zobrazit více v PubMed
Mok MC. Cytokinins and plant development—An overview. In Cytokinins-Chemistry, Activity, and Function, MCMok, ed (Boca Raton, FL:CRC Press; ); 1994. pp. 155–166.
Haberer G, Kieber JJ. Cytokinins. New insights into a classic phytohormone. Plant Physiol. 2002;128: 354–362. PubMed PMC
Kakimoto T. Perception and signal transduction of cytokinins. Annu Rev Plant Biol. 2003;54: 605–627. PubMed
Mok DW, Mok MC. Cytokinin Metabolism and Action. Annu Rev Plant Physiol Plant Mol Biol. 2001;52: 89–118. PubMed
Sakakibara H. Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol. 2006;57: 431–449. PubMed
Kamada-Nobusada T, Sakakibara H. Molecular basis for cytokinin biosynthesis. Phytochemistry. 2009;70: 444–449. 10.1016/j.phytochem.2009.02.007 PubMed DOI
Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell. 2003;15: 2532–2550. PubMed PMC
Hwang I, Sheen J. Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature. 2001;413: 383–389. PubMed
Heyl A, Schmülling T. Cytokinin signal perception and transduction. Curr Opin Plant Biol. 2003;6: 480–488. PubMed
To JP, Kieber JJ. Cytokinin signaling: two-components and more. Trends Plant Sci. 2008;13: 85–92. 10.1016/j.tplants.2007.11.005 PubMed DOI
Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, et al. Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature. 2001;409: 1060–1063. PubMed
Suzuki T, Miwa K, Ishikawa K, Yamada H, Aiba H, Mizuno T. The Arabidopsis sensor His-kinase, AHk4, can respond to cytokinins. Plant Cell Physiol. 2001;42: 107–113. PubMed
Ueguchi C, Sato S, Kato T, Tabata S. The AHK4 gene involved in the cytokinin-signaling pathway as a direct receptor molecule in Arabidopsis thaliana. Plant Cell Physiol. 2001;42: 751–755. PubMed
Yamada H, Suzuki T, Terada K, Takei K, Ishikawa K, Miwa K, et al. The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol. 2001;42: 1017–1023. PubMed
El-Showk S, Ruonala R, Helariutta Y. Crossing paths: cytokinin signalling and crosstalk. Development. 2013;140: 1373–1383. 10.1242/dev.086371 PubMed DOI
Hwang I, Chen HC, Sheen J. Two-component signal transduction pathways in Arabidopsis. Plant Physiol. 2002;129: 500–515. PubMed PMC
Hosoda K, Imamura A, Katoh E, Hatta T, Tachiki M, Yamada H, et al. Molecular structure of the GARP family of plant Myb-related DNA binding motifs of the Arabidopsis response regulators. Plant Cell. 2002;14: 2015–2029. PubMed PMC
Lohrmann J, Sweere U, Zabaleta E, Baurle I, Keitel C, Kozma-Bognar L, et al. The response regulator ARR2: a pollen-specific transcription factor involved in the expression of nuclear genes for components of mitochondrial complex I in Arabidopsis. Mol Genet Genomics. 2001;265: 2–13. PubMed
Sakai H, Aoyama T, Oka A. Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J. 2000;24: 703–711. PubMed
To JP, Haberer G, Ferreira FJ, Deruère J, Mason MG, Schaller GE, et al. Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell. 2004;16: 658–671. PubMed PMC
D'Agostino IB, Kieber JJ. Molecular mechanisms of cytokinin action. Curr Opin Plant Biol. 1999;2: 359–364. PubMed
D'Agostino IB, Deruère J, Kieber JJ. Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol. 2000;124: 1706–1717. PubMed PMC
Mason MG, Mathews DE, Argyros DA, Maxwell BB, Kieber JJ, Alonso JM, et al. Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell. 2005;17: 3007–3018. PubMed PMC
Ishida K, Yamashino T, Yokoyama A, Mizuno T. Three type-B response regulators, ARR1, ARR10 and ARR12, play essential but redundant roles in cytokinin signal transduction throughout the life cycle of Arabidopsis thaliana. Plant Cell Physiol. 2008;49: 47–57. PubMed
Osakabe Y, Miyata S, Urao T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Overexpression of Arabidopsis response regulators, ARR4/ATRR1/IBC7 and ARR8/ATRR3, alters cytokinin responses differentially in the shoot and in callus formation. Biochem Biophys Res Commun. 2002;293: 806–815. PubMed
Lee DJ, Park JY, Ku SJ, Ha YM, Kim S, Kim MD, et al. Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7(ARR7) overexpression in cytokinin response. Mol Genet Genomics. 2007;277: 115–137. PubMed
Kiba T, Yamada H, Sato S, Kato T, Tabata S, Yamashino T, et al. The type-A response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana. Plant Cell Physiol. 2003;44: 868–874. PubMed
Pils B, Heyl A. Unraveling the evolution of cytokinin signaling. Plant Physiol. 2009;151: 782–791. 10.1104/pp.109.139188 PubMed DOI PMC
Kiba T, Aoki K, Sakakibara H, Mizuno T. Arabidopsis response regulator, ARR22, ectopic expression of which results in phenotypes similar to the wol cytokinin-receptor mutant. Plant Cell Physiol. 2004;45: 1063–1077. PubMed
Vogel JP, Woeste KE, Theologis A, Kieber JJ. Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc Natl Acad Sci U S A. 1998;95: 4766–4771. PubMed PMC
Chae HS, Faure F, Kieber JJ. The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell. 2003;15: 545–559. PubMed PMC
Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, et al. Acyl-lipid metabolism Arabidopsis Book 11. 2013;e0161 10.1199/tab.0161 PubMed DOI PMC
D'Auria JC. Acyltransferases in plants: a good time to be BAHD. Curr Opin Plant Biol. 2006;9: 331–340. PubMed
Yeats TH, Rose JK. The formation and function of plant cuticles. Plant Physiol. 2013;163: 5–20. 10.1104/pp.113.222737 PubMed DOI PMC
Piotrowska A, Bajguz A. Conjugates of abscisic acid, brassinosteroids, ethylene, gibberellins, and jasmonates. Phytochemistry. 2011;72: 2097–2112. 10.1016/j.phytochem.2011.08.012 PubMed DOI
Zeier J. New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant Cell Environ. 2013;36: 2085–2103. 10.1111/pce.12122 PubMed DOI
Panikashvili D, Shi JX, Schreiber L, Aharoni A. The Arabidopsis DCR encoding a soluble BAHD acyltransferase is required for cutin polyester formation and seed hydration properties. Plant Physiol. 2009;151: 1773–1789. 10.1104/pp.109.143388 PubMed DOI PMC
Rani SH, Krishna TH, Saha S, Negi AS, Rajasekharan R. Defective in cuticular ridges (DCR) of Arabidopsis thaliana, a gene associated with surface cutin formation, encodes a soluble diacylglycerol acyltransferase. J Biol Chem. 2010;285: 38337–38347. 10.1074/jbc.M110.133116 PubMed DOI PMC
Donnelly PM, Bonetta D, Tsukaya H, Dengler RE, Dengler NG. Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev Biol. 1999;215: 407–419. PubMed
Ren B, Liang Y, Deng Y, Chen Q, Zhang J, Yang X, et al. Genome-wide comparative analysis of type-A Arabidopsis response regulator genes by overexpression studies reveals their diverse roles and regulatory mechanisms in cytokinin signaling. Cell Res. 2009;19: 1178–1190. 10.1038/cr.2009.88 PubMed DOI
Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, et al. Cellular organisation of the Arabidopsis thaliana root. Development. 1993;119: 71–84. PubMed
Higuchi M, Pischke MS, Mähönen AP, Miyawaki K, Hashimoto Y, Seki M, et al. In planta functions of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci U S A. 2004;101: 8821–8826. PubMed PMC
Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16: 735–743. PubMed
Jefferson RA, Kavanagh TA, Bevan MW. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987;6: 3901–3907. PubMed PMC
Laxmi A, Paul LK, Raychaudhuri A, Peters JL, Khurana JP. Arabidopsis cytokinin-resistant mutant, cnr1, displays altered auxin responses and sugar sensitivity. Plant Mol Biol. 2006;62: 409–425. PubMed
Svacinova J, Novak O, Plackova L, Lenobel R, Holik J, Strnad M, et al. A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods 2012;8: 17 10.1186/1746-4811-8-17 PubMed DOI PMC
Hoyerová K, Gaudinová A, Malbeck J, Dobrev PI, Kocábek T, Solcová B, et al. Efficiency of different methods of extraction and purification of cytokinins. Phytochemistry. 2006;67: 1151–1159. PubMed
Dobrev PI, Kamínek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid phase extraction. J Chromat A. 2002;950: 212–219. PubMed
Zhang Z, Zhang H, Quan R, Wang XC, Huang R. Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiol. 2009;150: 365–377. 10.1104/pp.109.135830 PubMed DOI PMC
Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science. 2003;301: 653–657. PubMed
Colón-Carmona A, You R, Haimovitch-Gal T, Doerner P. Technical advance: spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein. Plant J. 1999;20: 503–508. PubMed
Inagaki S, Suzuki T, Ohto MA, Urawa H, Horiuchi T, Nakamura K, et al. Arabidopsis TEBICHI, with helicase and DNA polymerase domains, is required for regulated cell division and differentiation in meristems. Plant Cell. 2006;18: 879–892. PubMed PMC
Miller CO, Skoog F, Okumura FS, Saltza MHV, Strong FM. Isolation, structure, and synthesis of kinetin, a substance promoting cell division. J Am Chem Soc. 1956;78: 1375–1380.
Kuroha T, Kato H, Asami T, Yoshida S, Kamada H, Satoh S. A trans-zeatin riboside in root xylem sap negatively regulates adventitious root formation on cucumber hypocotyls. J Exp Bot. 2002;53: 2193–2200. PubMed
Chory J, Reinecke D, Sim S, Washburn T, Brenner M. A Role for Cytokinins in De-Etiolation in Arabidopsis (det Mutants Have an Altered Response to Cytokinins). Plant Physiol. 1994;104: 339–347. PubMed PMC
Su W, Howell SH. The Effects of Cytokinin and Light on Hypocotyl Elongation in Arabidopsis Seedlings Are Independent and Additive. Plant Physiol. 1995;108: 1423–1430. PubMed PMC
Lochmanová G, Zdráhal Z, Konecná H, Koukalová S, Malbeck J, Soucek P, et al. Cytokinin-induced photomorphogenesis in dark-grown Arabidopsis: a proteomic analysis. Journal of Experimental Botany. 2008;59: 3705–3719. 10.1093/jxb/ern220 PubMed DOI
Guzmán P, Ecker JR. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell. 1990;2: 513–523. PubMed PMC
Li Y, Beisson F, Koo AJ, Molina I, Pollard M, Ohlrogge J. Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers. Proc Natl Acad Sci U S A. 2007;104: 18339–18344. PubMed PMC
Li-Beisson Y, Pollard M, Sauveplane V, Pinot F, Ohlrogge J, Beisson F. Nanoridges that characterize the surface morphology of flowers require the synthesis of cutin polyester. Proc Natl Acad Sci U S A. 2009;106: 22008–22013. 10.1073/pnas.0909090106 PubMed DOI PMC
Catterou M, Dubois F, Smets R, Vaniet S, Kichey T, Van Onckelen H, et al. hoc: An Arabidopsis mutant overproducing cytokinins and expressing high in vitro organogenic capacity. Plant J. 2002;30: 273–287. PubMed
Saibo NJ, Vriezen WH, De Grauwe L, Azmi A, Prinsen E, Van der Straeten D. A comparative analysis of the Arabidopsis mutant amp1–1 and a novel weak amp1 allele reveals new functions of the AMP1 protein. Planta. 2007;225: 831–842. PubMed
Beisson F, Li-Beisson Y, Pollard M. Solving the puzzles of cutin and suberin polymer biosynthesis. Curr Opin Plant Biol. 2012;15: 329–337. 10.1016/j.pbi.2012.03.003 PubMed DOI
Wellesen K, Durst F, Pinot F, Benveniste I, Nettesheim K, Wisman E, et al. Functional analysis of the LACERATA gene of Arabidopsis provides evidence for different roles of fatty acid omega-hydroxylation in development. Proc Natl Acad Sci U S A. 2001;98: 9694–9699. PubMed PMC
Kurdyukov S, Faust A, Nawrath C, Bär S, Voisin D, Efremova N, et al. The epidermis-specific extracellular BODYGUARD controls cuticle development and morphogenesis in Arabidopsis. Plant Cell. 2006;18: 321–339. PubMed PMC
Macgregor DR, Deak KI, Ingram PA, Malamy JE. Root system architecture in Arabidopsis grown in culture is regulated by sucrose uptake in the aerial tissues. Plant Cell. 2008;20: 2643–2660. 10.1105/tpc.107.055475 PubMed DOI PMC
Dello Ioio R, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P, et al. Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol. 2007;17: 678–682. PubMed
Cary AJ, Liu W, Howell SH. Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyl elongation in Arabidopsis thaliana seedlings. Plant Physiol. 1995;107: 1075–1082. PubMed PMC
Xiao F, Goodwin SM, Xiao Y, Sun Z, Baker D, Tang X, et al. Arabidopsis CYP 86A2 represses Pseudomonas syringae type III genes and is required for cuticle development. EMBO J. 2004;23: 2903–2913. PubMed PMC
Yang W, Pollard M, Li-Beisson Y, Beisson F, Feig M, Ohlrogge J. A distinct type of glycerol-3-phosphate acyltransferase with sn-2 preference and phosphatase activity producing 2-monoacylglycerol. Proc Natl Acad Sci U S A. 2010;107: 12040–12045. 10.1073/pnas.0914149107 PubMed DOI PMC
Molina I, Ohlrogge JB, Pollard M. Deposition and localization of lipid polyester in developing seeds of Brassica napus and Arabidopsis thaliana. Plant J. 2008;53: 437–449. 10.1111/j.1365-313X.2007.03348.x PubMed DOI