Contribution of indirect effects to clustered damage in DNA irradiated with protons
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
25897140
DOI
10.1093/rpd/ncv159
PII: ncv159
Knihovny.cz E-resources
- MeSH
- DNA chemistry radiation effects MeSH
- Hydroxyl Radical chemistry MeSH
- Kinetics MeSH
- Coumarins chemistry MeSH
- DNA Repair genetics MeSH
- Plasmids chemistry genetics MeSH
- DNA Damage radiation effects MeSH
- Escherichia coli Proteins metabolism MeSH
- Protons * MeSH
- Dose-Response Relationship, Radiation MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- coumarin-3-carboxylic acid MeSH Browser
- DNA MeSH
- Hydroxyl Radical MeSH
- Coumarins MeSH
- Escherichia coli Proteins MeSH
- Protons * MeSH
Protons are the dominant particles both in galactic cosmic rays and in solar particle events and, furthermore, proton irradiation becomes increasingly used in tumour treatment. It is believed that complex DNA damage is the determining factor for the consequent cellular response to radiation. DNA plasmid pBR322 was irradiated at U120-M cyclotron with 30 MeV protons and treated with two Escherichia coli base excision repair enzymes. The yields of SSBs and DSBs were analysed using agarose gel electrophoresis. DNA has been irradiated in the presence of hydroxyl radical scavenger (coumarin-3-carboxylic acid) in order to distinguish between direct and indirect damage of the biological target. Pure scavenger solution was used as a probe for measurement of induced OH· radical yields. Experimental OH· radical yield kinetics was compared with predictions computed by two theoretical models-RADAMOL and Geant4-DNA. Both approaches use Geant4-DNA for description of physical stages of radiation action, and then each of them applies a distinct model for description of the pre-chemical and chemical stage.
References provided by Crossref.org
Clustered DNA Damage Patterns after Proton Therapy Beam Irradiation Using Plasmid DNA
Proton-induced direct and indirect damage of plasmid DNA