Characterization of early disease status in treatment-naive male paediatric patients with Fabry disease enrolled in a randomized clinical trial
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, randomizované kontrolované studie, práce podpořená grantem
PubMed
25955246
PubMed Central
PMC4425695
DOI
10.1371/journal.pone.0124987
PII: PONE-D-14-36438
Knihovny.cz E-zdroje
- MeSH
- biopsie MeSH
- cévní endotel patologie MeSH
- demografie MeSH
- dítě MeSH
- Fabryho nemoc krev farmakoterapie patofyziologie moč MeSH
- genotyp MeSH
- glykolipidy krev MeSH
- hodnoty glomerulární filtrace MeSH
- johexol MeSH
- kůže krevní zásobení MeSH
- kvalita života MeSH
- ledviny patologie patofyziologie ultrastruktura MeSH
- lidé MeSH
- mladiství MeSH
- mozek patologie MeSH
- mutace genetika MeSH
- předškolní dítě MeSH
- sfingolipidy krev MeSH
- trihexosylceramidy krev genetika moč MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- globotriaosyl lysosphingolipid MeSH Prohlížeč
- globotriaosylceramide MeSH Prohlížeč
- glykolipidy MeSH
- johexol MeSH
- sfingolipidy MeSH
- trihexosylceramidy MeSH
TRIAL DESIGN: This analysis characterizes the degree of early organ involvement in a cohort of oligo-symptomatic untreated young patients with Fabry disease enrolled in an ongoing randomized, open-label, parallel-group, phase 3B clinical trial. METHODS: Males aged 5-18 years with complete α-galactosidase A deficiency, without symptoms of major organ damage, were enrolled in a phase 3B trial evaluating two doses of agalsidase beta. Baseline disease characteristics of 31 eligible patients (median age 12 years) were studied, including cellular globotriaosylceramide (GL-3) accumulation in skin (n = 31) and kidney biopsy (n = 6; median age 15 years; range 13-17 years), renal function, and glycolipid levels (plasma, urine). RESULTS: Plasma and urinary GL-3 levels were abnormal in 25 of 30 and 31 of 31 patients, respectively. Plasma lyso-GL-3 was elevated in all patients. GL-3 accumulation was documented in superficial skin capillary endothelial cells (23/31 patients) and deep vessel endothelial cells (23/29 patients). The mean glomerular filtration rate (GFR), measured by plasma disappearance of iohexol, was 118.1 mL/min/1.73 m(2) (range 90.4-161.0 mL/min/1.73 m(2)) and the median urinary albumin/creatinine ratio was 10 mg/g (range 4.0-27.0 mg/g). On electron microscopy, renal biopsy revealed GL-3 accumulation in all glomerular cell types (podocytes and parietal, endothelial, and mesangial cells), as well as in peritubular capillary and non-capillary endothelial, interstitial, vascular smooth muscle, and distal tubules/collecting duct cells. Lesions indicative of early Fabry arteriopathy and segmental effacement of podocyte foot processes were found in all 6 patients. CONCLUSIONS: These data reveal that in this small cohort of children with Fabry disease, histological evidence of GL-3 accumulation, and cellular and vascular injury are present in renal tissues at very early stages of the disease, and are noted before onset of microalbuminuria and development of clinically significant renal events (e.g. reduced GFR). These data give additional support to the consideration of early initiation of enzyme replacement therapy, potentially improving long-term outcome. TRIAL REGISTRATION: ClinicalTrials.gov NCT00701415.
Academic Medical Center University Hospital of Amsterdam Amsterdam The Netherlands
Charles University Prague General University Hospital Prague Prague Czech Republic
Cincinnati Children's Hospital Medical Center Cincinnati Ohio United States of America
Department of Pathology Genzyme Framingham Massachusetts United States of America
Department of Pathology University of Washington Seattle Washington United States of America
Department of Pediatrics Haukeland University Hospital Bergen Norway
Emory University School of Medicine Decatur Georgia United States of America
Genzyme Europe Saint Germain en Laye France
Hôpital du Sacré Cœur de Montréal and University of Montreal Montreal QC Canada
Hospital São Vicente de Paulo Passo Fundo RS Brazil
Royal Free Hospital London United Kingdom
University Medical Center Mainz Mainz Germany
University of British Columbia Child and Family Research Institute Vancouver BC Canada
University of Washington School of Medicine Seattle Washington United States of America
Zobrazit více v PubMed
Desnick RJ, Ioannou YA, Eng CM. Alpha-galactosidase A deficiency: Fabry Disease In: Scriver C, Beaudet A, Sly W, Valle D, editors. The metabolic bases of inherited disease. 8th ed. New York: McGraw-Hill; 2001. pp. 3733–3774.
Breunig F, Wanner C. Enzyme replacement therapy for Fabry disease: proving the clinical benefit. Nephrol Dial Transplant. 2003;18: 7–9. PubMed
Eng CM, Germain DP, Banikazemi M, Warnock DG, Wanner C, Hopkin RJ, et al. Fabry disease: guidelines for the evaluation and management of multi-organ system involvement. Genet Med. 2006;8: 539–548. PubMed
Wilcox WR, Oliviera JP, Hopkin RJ, Ortiz A, Banikazemi M, Feldt-Rasmussen U, et al. Females with Fabry disease frequently have major organ involvement: lessons from the Fabry registry. Mol Genet Metab. 2008;93: 112–128. PubMed
Schiffmann R, Warnock DG, Banikazemi M, Bultas J, Linthorst GE, Packman S, et al. Fabry disease: progression of nephropathy, and prevalence of cardiac and cerebrovascular events before enzyme replacement therapy. Nephrol Dial Transplant. 2009;24: 2102–2111. 10.1093/ndt/gfp031 PubMed DOI PMC
Waldek S, Patel MR, Banikazemi M, Lemay R, Lee P. Life expectancy and cause of death in males and females with Fabry disease: findings from the Fabry Registry. Genet Med. 2009;11: 790–796. 10.1097/GIM.0b013e3181bb05bb PubMed DOI
Ries M, Ramaswami U, Parini R, Lindblad B, Whybra C, Willers I, et al. The early clinical phenotype of Fabry disease: a study on 35 European children and adolescents. Eur J Pediatr. 2003;162: 767–772. PubMed
Ramaswami U, Whybra C, Parini R, Pintos-Morell G, Mehta A, Sunder-Plassmann G, et al. Clinical manifestations of Fabry disease in children: data from the Fabry Outcome Survey. Acta Pediatr. 2006;95: 86–92. PubMed
Hopkin RJ, Bissler J, Banikazemi M, Clarke L, Eng CM, Germain DP, et al. Characterization of Fabry disease in 352 pediatric patients in the Fabry registry. Pediatr Res. 2008;64: 550–555. 10.1203/PDR.0b013e318183f132 PubMed DOI
Ortiz A, Oliviera JP, Waldek S, Warnock DG, Cianciaruso B, Wanner C, et al. Nephropathy in males and females with Fabry disease: cross-sectional description of patients before treatment with enzyme replacement therapy. Nephrol Dial Transplant. 2008;23: 1600–1607. 10.1093/ndt/gfm848 PubMed DOI
Wanner C, Oliveira JP, Ortiz A, Mauer M, Germain DP, Linthorst GE, et al. Prognostic indicators of renal disease progression in adults with Fabry disease: natural history data from the Fabry Registry. Clin J Am Soc Nephrol. 2010;5: 2220–2228. 10.2215/CJN.04340510 PubMed DOI PMC
Tøndel C, Bostad L, Larsen KK, Hirth A, Vikse BE, Houge G, et al. Agalsidase benefits renal histology in young patients with Fabry disease. J Am Soc Nephrol. 2013;24: 137–148. 10.1681/ASN.2012030316 PubMed DOI PMC
Gubler MC, Lenoir G, Grünfeld JP, Ulmann A, Droz D, Habib R. Early renal changes in hemizygous and heterozygous patients with Fabry’s disease. Kidney Int. 1978;13: 223–225. PubMed
Fogo AB, Bostad L, Svarstad E, Cook WJ, Moll S, Barbey F, et al. Scoring system for renal pathology in Fabry disease: report of the International Study Group of Fabry Nephropathy (ISGFN). Nephrol Dial Transplant. 2010;25: 2168–2177. 10.1093/ndt/gfp528 PubMed DOI PMC
Tøndel C, Bostad L, Hirth A, Svarstad E. Renal biopsy findings in children and adolescents with Fabry disease and minimal albuminuria. Am J Kidney Dis. 2008;51: 767–776. 10.1053/j.ajkd.2007.12.032 PubMed DOI
Najafian B, Svarstad E, Bostad L, Gubler MC, Tøndel C, Whitley C, et al. Progressive podocyte injury and globotriaosylceramide (GL-3) accumulation in young patients with Fabry disease. Kidney Int. 2011;79: 663–670. 10.1038/ki.2010.484 PubMed DOI PMC
Wraith JE, Tylki-Szymanska A, Guffon N, Lien YH, Tsimaratos M, Vellodi A, et al. Safety and efficacy of enzyme replacement therapy with agalsidase beta: an international, open-label study in pediatric patients with Fabry disease. J Pediatr. 2008;152: 563–570. 10.1016/j.jpeds.2007.09.007 PubMed DOI
Tøndel C, Ramaswami U, Aakre KM, Wijburg F, Bouwman M, Svarstad E. Monitoring renal function in children with Fabry disease: comparisons of measured and creatinine-based estimated glomerular filtration rate. Nephrol Dial Transplant. 2010;25: 1507–1513. 10.1093/ndt/gfp658 PubMed DOI
Kampmann C, Wiethoff CM, Wenzel A, Stolz G, Betancor M, Wippermann CF, et al. Normal values of M mode echocardiographic measurements of more than 2000 healthy infants and children in central Europe. Heart. 2000;83: 667–672. PubMed PMC
Roddy TP, Nelson BC, Sung CC, Araghi S, Wilkens D, Zhang XK, et al. Liquid chromatography-tandem mass spectrometry quantification of globotriaosylceramide in plasma for long-term monitoring of Fabry patients treated with enzyme replacement therapy. Clin Chem. 2005;51: 237–240. PubMed
Thurberg BL, Randolph Byers H, Granter SR, Phelps RG, Gordon RE, O’Callaghan M. Monitoring the 3-year efficacy of enzyme replacement therapy in Fabry disease by repeated skin biopsies. J Invest Dermatol. 2004;122: 900–908. PubMed
Gaspari F, Perico N, Ruggenenti P, Mosconi L, Amuchastegui CS, Guerini E, et al. Plasma clearance of nonradioactive iohexol as a measure of glomerular filtration rate. J Am Soc Nephrol. 1995;6: 257–263. PubMed
Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20: 629–637. 10.1681/ASN.2008030287 PubMed DOI PMC
Levey AS, Steven LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150: 604–612. PubMed PMC
Thurberg BL, Renneke H, Colvin RB, Dikman S, Gordon RE, Collins AB, et al. Globotriaosylceramide accumulation in the Fabry kidney is cleared from multiple cell types after enzyme replacement therapy. Kidney Int. 2002;62: 1933–1946. PubMed
Toyoda M, Najafian B, Kim Y, Caramori ML, Mauer M. Podocyte detachment and reduced glomerular capillary endothelial fenestration in human type 1 diabetic nephropathy. Diabetes. 2007;56: 2155–2160. PubMed
Najafian B, Mauer M. Quantitating glomerular endothelial fenestration: an unbiased stereological approach. Am J Nephrol. 2011;33(Suppl 1): 34–39. 10.1159/000327075 PubMed DOI PMC
Schäfer E, Baron K, Widmer U, Deegan P, Neumann HP, Sunder-Plassmann G, et al. Thirty-four novel mutations of the GLA gene in 121 patients with Fabry disease. Hum Mutat. 2005;25: 412 PubMed
Davies JP, Winchester BG, Malcolm S. Mutation analysis in patients with the typical form of Anderson-Fabry disease. Hum Mol Genet. 1993;2: 1051–1053. PubMed
Ploos van Amstel JK, Jansen RP, de Jong JG, Hamel BC, Wevers RA. Six novel mutations in the alpha-galactosidase A gene in families with Fabry disease. Hum Mol Genet. 1994;3:503–505. PubMed
Ashton-Prolla P, Tong B, Shabbeer J, Astrin KH, Eng CM, Desnick RJ. Fabry disease: twenty-two novel mutations in the alpha-galactosidase A gene and genotype/phenotype correlations in severely and mildly affected hemizygotes and heterozygotes. J Investig Med. 2000;48: 227–235. PubMed
Eng CM, Resnick-Silverman LA, Niehaus DJ, Astrin KH, Desnick RJ. Nature and frequency of mutations in the alpha-galactosidase A gene that cause Fabry disease. Am J Hum Genet. 1993;53: 1186–1197. PubMed PMC
Shabbeer J, Yasuda M, Luca E, Desnick RJ. Fabry disease: 45 novel mutations in the alpha-galactosidase A gene causing the classical phenotype. Mol Genet Metab. 2002;76: 23–30. PubMed
Sachdev B, Takenaka T, Teraguchi H, Tei C, Lee P, McKenna WJ, et al. Prevalence of Anderson-Fabry disease in male patients with late onset hypertrophic cardiomyopathy. Circulation. 2002;105: 1407–1411. PubMed
Shabbeer J, Yasuda M, Benson SD, Desnick RJ. Fabry disease: identification of 50 novel alpha-galactosidase A mutations causing the classic phenotype and three-dimensional structural analysis of 29 missense mutations. Hum Genomics. 2006;2: 297–309. PubMed PMC
Shabbeer J, Robinson M, Desnick RJ. Detection of alpha-galactosidase a mutations causing Fabry disease by denaturing high performance liquid chromatography. Hum Mutat. 2005;25: 299–305. PubMed
Ishii S, Sakuraba H, Suzuki Y. Point mutations in the upstream region of the alpha-galactosidase A gene exon 6 in an atypical variant of Fabry disease. Hum Genet. 1992;89: 29–32. PubMed
Ashley G, Shabbeer J, Yasuda M, Eng CM, Desnick RJ. Fabry disease: twenty novel alpha-galactosidase A mutations causing the classical phenotype. J Hum Genet. 2001;46: 192–196. PubMed
Blanch LC, Meaney C, Morris CP. A sensitive mutation screening for Fabry disease: detection of nine mutations in the alpha-galactosidase A gene. Hum Mutat. 1996;8: 38–43. PubMed
Spanu C, Lekanne dit Deprez RH, Groener JE, Nita CC. Gene symbol: GLA. Hum Genet. 2007;121: 295 PubMed
Filoni C, Caciotti A, Carraresi L, Cavicchi C, Parini R, Antuzzi D, et al. Functional studies of new GLA gene mutations leading to conformational Fabry disease. Biochim Biophys Acta. 2010;1802: 247–252. 10.1016/j.bbadis.2009.11.003 PubMed DOI PMC
Miyamura N, Araki E, Matsuda K, Yoshimura R, Furukawa N, Tsuruzoe K, et al. A carboxy-terminal truncation of human alpha-galactosidase A in a heterozygous female with Fabry disease and modification of the enzymatic activity by the carboxy-terminal domain. Increased, reduced, or absent enzyme activity depending on number of amino acid residues deleted. J Clin Invest. 1996;98: 1809–1817. PubMed PMC
Meaney C, Blanch LC, Morris CP. A nonsense mutation (R220X) in the alpha-galactosidase A gene detected in a female carrier of Fabry disease. Hum Mol Genet. 1994;3: 1019–1020. PubMed
Blaydon D, Hill J, Winchester B. Fabry disease: 20 novel GLA mutations in 35 families. Hum Mutat. 2001;18: 459 PubMed
Park JY, Kim GH, Kim SS, Ko JM, Lee JJ, Yoo HW. Effects of a chemical chaperone on genetic mutations in alpha-galactosidase A in Korean patients with Fabry disease. Exp Mol Med. 2009;41: 1–7. PubMed PMC
Lukas J, Giese AK, Markoff A, Grittner U, Kolodny E, Mascher H, et al. Functional characterisation of alpha-galactosidase a mutations as a basis for a new classification system in fabry disease. PLoS Genet. 2013;9: e1003632 10.1371/journal.pgen.1003632 PubMed DOI PMC
Buda P, Wieteska-Klimczak A, Ksiazyk J, Gietka P, Smorczewska-Kiljan A, Pronicki M, et al. Gastrointestinal phenotype of Fabry disease in a patient with pseudoobstruction syndrome. JIMD Rep. 2012;4: 25–28. 10.1007/8904_2011_63 PubMed DOI PMC
Togawa T, Kodama T, Suzuki T, Sugawara K, Tsukimura T, Ohashi T, et al. Plasma globotriaosylsphingosine as a biomarker of Fabry disease. Mol Genet Metab. 2010;100: 257–261. 10.1016/j.ymgme.2010.03.020 PubMed DOI
van der Tol L, Smid BE, Poorthuis BJ, Biegstraaten M, Deprez RH, Linthorst GE, et al. A systematic review on screening for Fabry disease: prevalence of individuals with genetic variants of unknown significance. J Med Genet. 2013;51: 1–9. 10.1136/jmedgenet-2013-101857 PubMed DOI
Chavers BM, Rheault MN, Foley RN. Kidney function reference values in US adolescents: national health and nutrition examination survey 1999–2008. Clin J Am Soc Nephrol. 2011;6: 1956–1962. 10.2215/CJN.10311110 PubMed DOI PMC
Rademacher E, Mauer M, Jacobs DR Jr, Chavers B, Steinke J, Sinaiko A. Albumin excretion rate in normal adolescents: relation to insulin resistance and cardiovascular risk factors and comparisons to type 1 diabetes mellitus patients. Clin J Am Soc Nephrol. 2008;3: 998–1005. 10.2215/CJN.04631007 PubMed DOI PMC
Kanai T, Yamagata T, Ito T, Odaka J, Saito T, Aoyagi J, et al. Foot process effacement with normal urinalysis in classic Fabry disease. JMID Rep. 2011;1: 39–42. PubMed PMC
Eng CM, Guffon N, Wilcox WR, Germain DP, Lee P, Waldek S, et al. Safety and efficacy of recombinant human alpha-galactosidase A replacement therapy in Fabry’s disease. N Engl J Med. 2001;345: 9–16. PubMed
Eng CM, Banikazemi M, Gordon RE, Goldman M, Phelps R, Kim L, et al. A phase 1/2 clinical trial of enzyme replacement therapy in Fabry disease: pharmacokinetic, substrate clearance, and safety studies. Am J Hum Genet. 2001;68: 711–722. PubMed PMC
Borgwardt L, Feldt-Rasmusssen U, Rasmussen AK, Ballegarrd M, Meldgaard Lund A. Fabry disease in children: agalsidase-beta enzyme replacement therapy. Clin Genet. 2013;83: 432–438. 10.1111/j.1399-0004.2012.01947.x PubMed DOI
Havranek S, Linhart A, Urbanova Z, Ramaswami U. Early cardiac changes in children with Anderson-Fabry disease. JIMD Rep. 2013;11: 53–64. 10.1007/8904_2013_222 PubMed DOI PMC
Varni JW, Limbers CA, Burwinkle TM. Impaired health-related quality of life in children and adolescents with chronic conditions: a comparative analysis of 10 disease clusters and 33 disease categories/severities utilizing the PedsQL 4.0 Generic Core Scales. Health Qual Life Outcomes. 2007;5: 43 PubMed PMC
Germain DP, Waldek S, Banikazemi M, Bushinsky DA, Charrow J, Desnick RJ, et al. Sustained long-term renal stabilization after 54 months of agalsidase beta therapy in patients with Fabry disease. J Am Soc Nephrol. 2007;18: 1547–1557. PubMed
Schiffmann R, Ries M, Timmons M, Flaherty JT, Brady RO. Long-term therapy with agalsidase alfa for Fabry disease: safety and effects on renal function in a home infusion setting. Nephrol Dial Transplant. 2006;21: 345–354. PubMed
Schiffmann R, Askari H, Timmons M, Robinson C, Benko W, Brady RO, et al. Weekly enzyme replacement therapy may slow decline of renal function in patients with Fabry disease who are on long-term biweekly dosing. J Am Soc Nephrol. 2007;18: 1576–1583. PubMed PMC
Banikazemi M, Bultas J, Waldek S, Wilcox WR, Whitley CB, McDonald M, et al. Agalsidase-beta therapy for advanced Fabry disease: a randomized trial. Ann Intern Med. 2007;146: 77–86. PubMed
ClinicalTrials.gov
NCT00701415